Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cortex ; 117: 16-32, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30925309

RESUMO

Our ability to stay focused is limited: prolonged performance of a task typically results in mental fatigue and decrements in performance over time. This so-called vigilance decrement has been attributed to depletion of attentional resources, though other factors such as reductions in motivation likely also play a role. In this study, we examined three electroencephalography (EEG) markers of attentional control, to elucidate which stage of attentional processing is most affected by time-on-task and motivation. To elicit the vigilance decrement, participants performed a sustained attention task for 80 min without breaks. After 60 min, participants were motivated by an unexpected monetary incentive to increase performance in the final 20 min. We found that task performance and self-reported motivation declined rapidly, reaching stable levels well before the motivation manipulation was introduced. Thereafter, motivation increased back up to the initial level, and remained there for the final 20 min. While task performance also increased, it did not return to the initial level, and fell to the lowest level overall during the final 10 min. This pattern of performance changes was mirrored by the trial-to-trial consistency of the phase of theta (3-7 Hz) oscillations, an index of the variability in timing of the neural response to the stimulus. As task performance decreased, temporal variability increased, suggesting that attentional stability is crucial for sustained attention performance. The effects of attention on our two other EEG measures-early P1/N1 event-related potentials (ERPs) and pre-stimulus alpha (9-14 Hz) power-did not change with time-on-task or motivation. In sum, these findings show that the vigilance decrement is accompanied by a decline in only some facets of attentional control, which cannot be fully brought back online by increases in motivation. The vigilance decrement might thus not occur due to a single cause, but is likely multifactorial in origin.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Potenciais Evocados/fisiologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Motivação/fisiologia , Estimulação Luminosa , Tempo de Reação/fisiologia , Autorrelato , Adulto Jovem
2.
Front Hum Neurosci ; 11: 529, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209183

RESUMO

As aging is associated with cognitive decline, particularly in the executive functions, it is essential to effectively improve cognition in older adults. Online cognitive training is currently a popular, though controversial method. Although some changes seem possible in older adults through training, far transfer, and longitudinal maintenance are rarely seen. Based on previous literature we created a unique, state-of-the-art intervention study by incorporating frequent sessions and flexible, novel, adaptive training tasks, along with an active control group. We created a program called TAPASS (Training Project Amsterdam Seniors and Stroke), a randomized controlled trial. Healthy older adults (60-80 y.o.) were assigned to a frequent- (FS) or infrequent switching (IS) experimental condition or to the active control group and performed 58 half-hour sessions over the course of 12 weeks. Effects on executive functioning, processing- and psychomotor speed, planning, verbal long term memory, verbal fluency, and reasoning were measured on four time points before, during and after the training. Additionally, we examined the explorative question which individual aspects added to training benefit. Besides improvements on the training, we found significant time effects on multiple transfer tasks in all three groups that likely reflected retest effects. No training-specific improvements were detected, and we did not find evidence of additional benefits of individual characteristics. Judging from these results, the therapeutic value of using commercially available training games to train the aging brain is modest, though any apparent effects should be ascribed more to expectancy and motivation than to the elements in our training protocol. Our results emphasize the importance of using parallel tests as outcome measures for transfer and including both active and passive control conditions. Further investigation into different training methods is advised, including stimulating social interaction and the use of more variable, novel, group-based yet individual-adjusted exercises.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...