Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(24): 243201, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776471

RESUMO

Rotational dynamics of D_{2} molecules inside helium nanodroplets is induced by a moderately intense femtosecond pump pulse and measured as a function of time by recording the yield of HeD^{+} ions, created through strong-field dissociative ionization with a delayed femtosecond probe pulse. The yield oscillates with a period of 185 fs, reflecting field-free rotational wave packet dynamics, and the oscillation persists for more than 500 periods. Within the experimental uncertainty, the rotational constant B_{He} of the in-droplet D_{2} molecule, determined by Fourier analysis, is the same as B_{gas} for an isolated D_{2} molecule. Our observations show that the D_{2} molecules inside helium nanodroplets essentially rotate as free D_{2} molecules.

2.
J Chem Phys ; 157(3): 034304, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35868921

RESUMO

We present a comprehensive study of enantioselective orientation of chiral molecules excited by a pair of delayed cross-polarized femtosecond laser pulses. We show that by optimizing the pulses' parameters, a significant degree (∼10%) of enantioselective orientation can be achieved at 0 and 5 K rotational temperatures. This study suggests a set of reasonable experimental conditions for inducing and measuring strong enantioselective orientation. The strong enantioselective orientation and the wide availability of the femtosecond laser systems required for the proposed experiments may open new avenues for discriminating and separating molecular enantiomers.


Assuntos
Lasers , Luz , Estereoisomerismo
3.
Phys Rev Lett ; 125(1): 013201, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678652

RESUMO

We present a novel, previously unreported phenomenon appearing in a thermal gas of nonlinear polar molecules excited by a single THz pulse. We find that the induced orientation lasts long after the excitation pulse is over. In the case of symmetric-top molecules, the time-averaged orientation remains indefinitely constant, whereas in the case of asymmetric-top molecules the orientation persists for a long time after the end of the pulse. We discuss the underlying mechanism, study its nonmonotonous temperature and amplitude dependencies, and show that there exist optimal parameters for maximal residual orientation. The persistent orientation implies a long-lasting macroscopic dipole moment, which may be probed by even harmonic generation and may enable deflection by inhomogeneous electrostatic fields.

4.
Phys Rev Lett ; 122(19): 193401, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144959

RESUMO

We show that recently discovered rotational echoes of molecules provide an efficient tool for studying collisional molecular dynamics in high-pressure gases. Our study demonstrates that rotational echoes enable the observation of extremely fast collisional dissipation, at timescales of the order of a few picoseconds, and possibly shorter. The decay of the rotational alignment echoes in CO_{2} gas and CO_{2}-He mixture up to 50 bar was studied experimentally, delivering collision rates that are in good agreement with the theoretical expectations. The suggested measurement protocol may be used in other high-density media, and potentially in liquids.

5.
Nano Lett ; 19(1): 261-268, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30540907

RESUMO

Controlling the nonlinear optical response of nanoscale metamaterials opens new exciting applications such as frequency conversion or flat metal optical elements. To utilize the already well-developed fabrication methods, a systematic design methodology for obtaining high nonlinearities is required. In this paper we consider an optimization-based approach, combining a multiparameter genetic algorithm with three-dimensional finite-difference time domain (FDTD) simulations. We investigate two choices of the optimization function: one which looks for plasmonic resonance enhancements at the frequencies of the process using linear FDTD, and another one, based on nonlinear FDTD, which directly computes the predicted nonlinear response. We optimize a four-wave-mixing process with specific predefined input frequencies in an array of rectangular nanocavities milled in a thin free-standing gold film. Both approaches yield a significant enhancement of the nonlinear signal. Although the direct calculation gives rise to the maximum possible signal, the linear optimization provides the expected triply resonant configuration with almost the same enhancement, while being much easier to implement in practice.

6.
Nat Commun ; 9(1): 5134, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510201

RESUMO

Orientation and alignment of molecules by ultrashort laser pulses is crucial for a variety of applications and has long been of interest in physics and chemistry, with the special emphasis on stereodynamics in chemical reactions and molecular orbitals imaging. As compared to the laser-induced molecular alignment, which has been extensively studied and demonstrated, achieving molecular orientation is a much more challenging task, especially in the case of asymmetric-top molecules. Here, we report the experimental demonstration of all-optical field-free three-dimensional orientation of asymmetric-top molecules by means of phase-locked cross-polarized two-color laser pulse. This approach is based on nonlinear optical mixing process caused by the off-diagonal elements of the molecular hyperpolarizability tensor. It is demonstrated on SO2 molecules and is applicable to a variety of complex nonlinear molecules.

7.
Opt Express ; 25(21): 24917-24926, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041165

RESUMO

We report experimental observations of rotated echoes of alignment induced by a pair of time-delayed and polarization-skewed femtosecond laser pulses interacting with an ensemble of molecular rotors. Rotated fractional echoes, rotated high order echoes and rotated imaginary echoes are directly visualized by using the technique of coincident Coulomb explosion imaging. We show that the echo phenomenon not only exhibits temporal recurrences but also spatial rotations determined by the polarization of the time-delayed second pulse. The dynamics of echo formation is well described by the laser-induced filamentation in rotational phase space. The quantum-mechanical simulation shows good agreements with the experimental results.

8.
Nat Commun ; 8: 14992, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28378810

RESUMO

Nanostructured metasurfaces offer unique capabilities for subwavelength control of optical waves. Based on this potential, a large number of metasurfaces have been proposed recently as alternatives to standard optical elements. In most cases, however, these elements suffer from large chromatic aberrations, thus limiting their usefulness for multiwavelength or broadband applications. Here, in order to alleviate the chromatic aberrations of individual diffractive elements, we introduce dense vertical stacking of independent metasurfaces, where each layer is made from a different material, and is optimally designed for a different spectral band. Using this approach, we demonstrate a triply red, green and blue achromatic metalens in the visible range. We further demonstrate functional beam shaping by a self-aligned integrated element for stimulated emission depletion microscopy and a lens that provides anomalous dispersive focusing. These demonstrations lead the way to the realization of ultra-thin superachromatic optical elements showing multiple functionalities-all in a single nanostructured ultra-thin element.

9.
Light Sci Appl ; 6(10): e17072, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30167206

RESUMO

Directional emission of electromagnetic radiation can be achieved using a properly shaped single antenna or a phased array of individual antennas. Control of the individual phases within an array enables scanning or other manipulations of the emission, and it is this property of phased arrays that makes them attractive in modern systems. Likewise, the propagation of surface plasmons at the interface between metal films and dielectric materials can be determined by shaping the individual surface nanostructures or via the phase control of individual elements in an array of such structures. Here, we demonstrate control of the propagation of surface plasmons within a linear array of nanostructures. The generic situation of plasmonic surface propagation that is different on both sides of a metal film provides a unique opportunity for such control: plasmons propagating on the slower side feed into the side with the faster propagation, creating a phased array of interfering antennas and thus controlling the directionality of the wake fields. We further show that by shaping the individual nanoantennas, we can generate an asymmetric propagation geometry.

10.
Nat Commun ; 7: 12533, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27545581

RESUMO

A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency-the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed.

11.
Nat Commun ; 7: 10367, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26797164

RESUMO

Metasurfaces, and in particular those containing plasmonic-based metallic elements, constitute an attractive set of materials with a potential for replacing standard bulky optical elements. In recent years, increasing attention has been focused on their nonlinear optical properties, particularly in the context of second and third harmonic generation and beam steering by phase gratings. Here, we harness the full phase control enabled by subwavelength plasmonic elements to demonstrate a unique metasurface phase matching that is required for efficient nonlinear processes. We discuss the difference between scattering by a grating and by subwavelength phase-gradient elements. We show that for such interfaces an anomalous phase-matching condition prevails, which is the nonlinear analogue of the generalized Snell's law. The subwavelength phase control of optical nonlinearities paves the way for the design of ultrathin, flat nonlinear optical elements. We demonstrate nonlinear metasurface lenses, which act both as generators and as manipulators of the frequency-converted signal.

12.
Phys Rev Lett ; 114(15): 153601, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25933313

RESUMO

We present one of the simplest classical systems featuring the echo phenomenon-a collection of randomly oriented free rotors with dispersed rotational velocities. Following excitation by a pair of time-delayed impulsive kicks, the mean orientation or alignment of the ensemble exhibits multiple echoes and fractional echoes. We elucidate the mechanism of the echo formation by the kick-induced filamentation of phase space, and provide the first experimental demonstration of classical alignment echoes in a thermal gas of CO_{2} molecules excited by a pair of femtosecond laser pulses.

13.
Sci Rep ; 5: 10033, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25974175

RESUMO

Optimizing the shape of nanostructures and nano-antennas for specific optical properties has evolved to be a very fruitful activity. With modern fabrication tools a large variety of possibilities is available for shaping both nanoparticles and nanocavities; in particular nanocavities in thin metal films have emerged as attractive candidates for new metamaterials and strong linear and nonlinear optical systems. Here we rationally design metallic nanocavities to boost their Four-Wave Mixing response by resonating the optical plasmonic resonances with the incoming and generated beams. The linear and nonlinear optical responses as well as the propagation of the electric fields inside the cavities are derived from the solution of Maxwell's equations by using the 3D finite-differences time domain method. The observed conversion-efficiency of near-infrared to visible light equals or surpasses that of BBO of equivalent thickness. Implications to further optimization for efficient and broadband ultrathin nonlinear optical materials are discussed.

14.
Phys Rev Lett ; 112(1): 013004, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24483895

RESUMO

We consider the optical properties of a gas of molecules that are brought to fast unidirectional spinning by a pulsed laser field. It is shown that a circularly polarized probe light passing through the medium inverts its polarization handedness and experiences a frequency shift controllable by the sense and the rate of molecular rotation. Our analysis is supported by two recent experiments on the laser-induced rotational Doppler effect in molecular gases and provides a good qualitative and quantitative description of the experimental observations.

15.
Phys Chem Chem Phys ; 16(6): 2289-96, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24126680

RESUMO

A systematic study of the influence of the excitation angle, the light polarization and the coating thickness of commercial SPM tips on the field enhancement in an apertureless scanning near-field optical microscope is presented. A new method to optimize the alignment of the electric field vector along the major tip axis by measuring the resonance frequency was developed. The simulations were performed with a MNPBEM toolbox based on the Boundary Element Method (BEM). The influence of the coating thickness was investigated for the first time. Coatings below 40 nm showed a drastic influence both on the resonance wavelength and the enhancement. A shift to higher angles of incidence for the maximum enhancement could be observed for greater tip radii.

16.
ACS Nano ; 8(1): 807-17, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24295332

RESUMO

The nonlinear optical dynamics of nanomaterials comprised of plasmons interacting with quantum emitters is investigated by a self-consistent model based on the coupled Maxwell-Liouville-von Neumann equations. It is shown that ultrashort resonant laser pulses significantly modify the optical properties of such hybrid systems. It is further demonstrated that the energy transfer between interacting molecules and plasmons occurs on a femtosecond time scale and can be controlled with both material and laser parameters.

17.
Adv Mater ; 25(15): 2234-8, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23427063

RESUMO

Spots of second harmonic generation (SHG) are produced from nanopatterned sub-micrometer areas of nonlinear polymer media. Information is written by using a biased-AFM tip, a highly nonlinear polymer (poly(methyl metha-acrylate)-co-Disperse Red 1), and a novel "floating-tip nanolithography" (FTN) technique. Dipoles are oriented and aligned at the nanoscale under the biased-AFM tip, resulting in SHG production. The information is storable over weeks.

18.
Phys Rev Lett ; 109(7): 073002, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-23006365

RESUMO

We demonstrate strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film. The coupling manifests itself as an anticrossing behavior of the two newly formed polaritons. As the coupling strength grows, a new mode emerges, which is attributed to long-range molecular interactions mediated by the plasmonic field. The new, molecular-like mode repels the polariton states, and leads to an opening of energy gaps both below and above the asymptotic free molecule energy.

19.
Phys Chem Chem Phys ; 14(40): 13989-96, 2012 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22990713

RESUMO

Single shot time resolved four wave mixing is a powerful tool for the acquisition of dynamic and spectroscopic data from molecules susceptible to bleaching or other photo-induced damage. We add polarization dependence to single shot methods, and demonstrate how magic angle measurements are made simpler by this methodology. We propose a new approach to single shot combined time/polarization measurements which can be generalized to other two dimensional combinations.


Assuntos
Hidrocarbonetos Bromados/química , Análise Espectral/instrumentação , Desenho de Equipamento , Cinética , Lasers , Luz , Modelos Moleculares , Fotodegradação , Análise Espectral/métodos
20.
Phys Rev Lett ; 109(3): 033001, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22861845

RESUMO

Recently, several femtosecond-laser techniques have demonstrated molecular excitation to high rotational states with a preferred sense of rotation. We consider collisional relaxation in a dense gas of such unidirectionally rotating molecules, and suggest that due to angular momentum conservation, collisions lead to the generation of macroscopic vortex gas flows. This argument is supported using the Direct Simulation Monte Carlo method, followed by a computational gas-dynamic analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...