Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22280205

RESUMO

Patients with chronic lymphocytic leukemia (CLL) treated with B-cell pathway inhibitors and anti-CD20 antibodies exhibit low humoral response rate (RR) following SARS-CoV-2 vaccination. To investigate the relationship between the initial transcriptional response to vaccination with ensuing B and T cell immune responses, we performed a comprehensive immune transcriptome analysis flanked by antibody and T cell assays in peripheral blood prospectively collected from 15 CLL/SLL patients vaccinated with heterologous BNT162b2/ChAdOx1 with follow up at a single institution. The two-dose antibody RR was 40% increasing to 53% after booster. Patients on BTKi, venetoclax {+/-} anti-CD20 antibody within 12 months of vaccination responded less well than those under BTKi alone. The two-dose T cell RR was 80% increasing to 93% after booster. Transcriptome studies revealed that seven patients showed interferon-mediated signaling activation within 2 days and one at 7 days after vaccination. Increasing counts of COVID-19 specific IGHV genes correlated with B-cell reconstitution and improved humoral RR. T cell responses in CLL patients appeared after vaccination regardless of treatment status. A higher humoral RR was associated with BTKi treatment and B-cell reconstitution. Boosting was particularly effective when intrinsic immune status was improved by CLL-treatment.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273565

RESUMO

Omicron is currently the dominant SARS-CoV-2 variant and several sublineages have emerged. Questions remain about the impact of previous SARS-CoV-2 exposure on cross-variant immune responses elicited by BA.2 infection compared to BA.1. Here we show that without previous history of COVID-19, BA.2 infection induces a reduced immune response against all variants of concern (VOC) compared to BA.1 infection. The absence of ACE2 binding in sera of previously naive BA.1 and BA.2 patients indicates a lack of meaningful neutralization. In contrast, anti-spike antibody levels and neutralizing activity greatly increased in the BA.1 and BA.2 patients with a previous history of COVID-19. Transcriptome analyses of peripheral immune cells showed significant differences in immune response and specific antibody generation between BA.1 and BA.2 patients as well as significant differences in expression of specific immune genes. In summary, prior infection status significantly impacts the innate and adaptive immune response against VOC following BA.2 infection.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22272837

RESUMO

Antibody response following Omicron infection is reported to be less robust than that to other variants. Here we investigated how prior vaccination and/or prior infection modulates that response. Disease severity, antibody responses and immune transcriptomes were characterized in four groups of Omicron-infected outpatients (n=83): unvaccinated/no prior infection, vaccinated/no prior infection, unvaccinated/prior infection and vaccinated/prior infection. The percentage of patients with asymptomatic or mild disease was highest in the vaccinated/no prior infection group (87%) and lowest in the unvaccinated/no prior infection group (47%). Significant anti-Omicron spike antibody levels and neutralizing activity were detected in the vaccinated group immediately after infection but were not present in the unvaccinated/no prior infection group. Within two weeks, antibody levels against Omicron, increased. Omicron neutralizing activity in the vaccinated group exceeded that of the prior infection group. No increase in neutralizing activity in the unvaccinated/no prior infection group was seen. The unvaccinated/prior infection group showed an intermediate response. We then investigated the early transcriptomic response following Omicron infection in these outpatient populations and compared it to that found in unvaccinated hospitalized patients with Alpha infection. Omicron infected patients showed a gradient of transcriptional response dependent upon prior vaccination and infection status that correlated with disease severity. Vaccinated patients showed a significantly blunted interferon response as compared to both unvaccinated Omicron infected outpatients and unvaccinated Alpha infected hospitalized patients typified by the response of specific gene classes such as OAS and IFIT that control anti-viral responses and IFI27, a predictor of disease outcome.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270617

RESUMO

Heterologous ChAdOx1-BNT162b2 vaccination induces a stronger immune response than two doses of BNT162b2 or ChAdOx1. Yet, the molecular transcriptome, the germline allelic variants of immunoglobulin loci and anti-Omicron antibody levels induced by the heterologous vaccination have not been formally investigated. Moreover, there is a paucity of COVID vaccine studies including diverse genetic populations. Here, we show a robust molecular immune transcriptome and antibody repertoire in 51 office workers from the Republic of Korea after a heterologous ChAdOx1-BNT162b2 vaccination or a homologous ChAdOx1-ChAdOx1 vaccination. Anti-spike-specific IgG antibody levels in the heterologous group increased from 14,000 U/ml to 142,000 AU/ml within eight days after the BNT162b2 vaccination. In contrast, antibody levels in the homologous group increased two-fold after the second ChAdOx1 dose. Antibody titers against the Omicron spike protein as compared to the ancestral strain were reduced to a lesser extent in the heterologous group. RNA-seq conducted on immune cells demonstrated a stronger activation of interferon-induced genetic programs in the heterologous cohort. An increase of specific IGHV clonal transcripts encoding neutralizing antibodies was preferentially detected in the heterologous cohort. Enrichment of B cell and CD4+ T cell responses were observed following both heterologous and homologous vaccination using scRNA-seq, but clonally expanded memory B cells were relatively stronger in the ChAdOx1-BNT162b2 cohort. In summary, a heterologous vaccination with ChAdOx1 followed by BNT162b2 provides an innate and adaptive immune response exceeding that seen in homologous ChAdOx1 vaccinations but equivalent to that seen in homologous BNT162b2 vaccination.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263284

RESUMO

Knowledge about the impact of prior SARS-CoV-2 infection of the elderly on mRNA vaccination response is needed to appropriately address the need for booster vaccination in this vulnerable population. To address this, we investigated antibody and genomic immune responses in 16 elderly (avg. 81 yrs.) individuals that had received a single booster dose of BNT162b vaccine 15 months after recovering from COVID-19. Spike-specific IgG antibody levels increased in each of the study participants from an average of 710 U/ml prior to the vaccination to more than 40,000 U/ml within ten weeks after the vaccination. In contrast, anti-spike-specific IgG antibody levels averaged 2,190 U/ml in 14 healthy SARS-CoV-2-naive individuals (avg. 58 yrs.) ten weeks after the second dose of BNT162b. RNA-seq conducted on PBMCs demonstrated the activation of interferon-activated genetic programs in both cohorts within one day. Unlike their transient induction in the younger naive population, persistent activity and the initiation of additional cell cycle regulated programs were obtained in the older COVID-19 recovered population. Here we show that the elderly, a high-risk population, can mount a strong antibody and a persistent molecular immune response upon receiving a single dose of mRNA vaccine 15 months after recovery from COVID-19.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257952

RESUMO

Fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) energize the COVID-19 pandemic. B.1.1.7 (VOC-202012/01) has become the predominant variant in many countries and a new lineage (VOC-202102/02) harboring the E484K escape mutation in the B.1.1.7 background emerged in February 20211. This variant is of concern due to reduced neutralizing activity by vaccine-elicited antibodies2,3. However, it is not known whether this single amino acid change leads to an altered immune response. Here, we investigate differences in the immune transcriptome in hospitalized patients infected with either B.1.1.7 (n=28) or B.1.1.7+E484K (n=12). RNA-seq conducted on PBMCs isolated within five days after the onset of COVID symptoms demonstrated elevated activation of specific immune pathways, including JAK-STAT signaling, in B.1.1.7+E484K patients as compared to B.1.1.7. Longitudinal transcriptome studies demonstrated a delayed dampening of interferon-activated pathways in B.1.1.7+E484K patients. Prior vaccination with BNT162b vaccine (n=8 one dose; n=1 two doses) reduced the transcriptome inflammatory response to B.1.1.7+E484K infection relative to unvaccinated patients. Lastly, the immune transcriptome of patients infected with additional variants (B.1.258, B.1.1.163 and B.1.7.7) displayed a reduced activation compared to patients infected with B.1.1.7. Acquisition of the E484K substitution in the B.1.1.7 background elicits an altered immune response, which could impact disease progression.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256862

RESUMO

Fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) energize the COVID-19 pandemic. The B.1.351 variant carrying the escape mutation E484K in the receptor binding domain is of particular concern due to reduced immunological protection following vaccination. Protection can manifest as early as 10 days following immunization with full protection two weeks following the second dose, but the course is not well-characterized for variants. Here, we investigated the immune transcriptome of six elderly individuals (average age 82 yr.) from an old peoples home, who contracted B.1.351, with four having received the first dose of BNT162b eight to 11 days prior to the onset of COVID-19 symptoms. The patients were hospitalized and received dexamethasone treatment. Immune transcriptomes were established from PBMCs approximately 10 and 35 days after the onset of COVID-19 symptomology. RNA-seq revealed a more intensive immune response in vaccinated patients as compared to unvaccinated ones. Specifically, transcription factors linked to the JAK/STAT pathway, interferon stimulated genes, and genes associated with innate antiviral immunity and COVID-19-SARS-CoV-2 infection were highly enriched in vaccinated patients. This rendered the transcriptomes of the older vaccinated group significantly different than older unvaccinated individuals infected at the same institution and more similar to the immune response of younger unvaccinated individuals (age range 48-62) following B.1.351 infection. All individuals in this study whether vaccinated or not were hospitalized due to B.1.351 infection and one vaccinated patient died illustrating that although an enhanced immune response was documented infection it was insufficient to protect from disease. This highlights the need for maintaining physical distancing and prevention measures throughout the time course of vaccination in older adults.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20185884

RESUMO

To investigate prevalence of ongoing activation of inflammation following asymptomatic SARS-CoV-2 infection we characterized immune cell transcriptomes from 43 asymptomatic seropositive and 52 highly exposed seronegative individuals with few underlying health issues following a community superspreading event. Four mildly symptomatic seropositive individuals examined three weeks after infection as positive controls demonstrated immunological activation. Approximately four to six weeks following the event, the two asymptomatic groups showed no significant differences. Two seropositive patients with underlying genetic disease impacting immunological activation were included (Cystic Fibrosis (CF), Nuclear factor-kappa B Essential Modulator (NEMO) deficiency). CF, but not NEMO, associated with significant immune transcriptome differences including some associated with severe SARS-CoV-2 infection (IL1B, IL17A, respective receptors). All subjects remained in their usual state of health from event through five-month follow-up. Here, asymptomatic infection resolved without evidence of prolonged immunological activation. Inclusion of subjects with underlying genetic disease illustrated the pathophysiological importance of context on impact of immunological response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...