Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(22): 12577-12584, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33749065

RESUMO

The first example of a triply bridging (µ3 -P) phosphine ligand has been discovered in the crown-shaped [Cu3 (µ2 -Hal)3 L] (Hal=Cl, Br, or I) complexes supported by tris[2-(2-pyridyl)ethyl]phosphine (L). Theoretical analysis completely confirms the observed µ3 -P-bridging pattern, revealing the interaction of the same lone pair of phosphorus with three valence 4s-orbitals of Cu atoms. The presented complexes exhibit outstanding blue phosphorescence (λem =442-465 nm) with the quantum efficiency reaching 100 %. The complex [Cu3 (µ2 -I)3 L] also exhibits remarkable thermo- and mechanochromic luminescence resulting in a sharp change in the emission colour upon external stimuli. These findings essentially contribute to coordination chemistry of the pnictine ligands.

2.
Dalton Trans ; 48(7): 2328-2337, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30604786

RESUMO

A series of red-emissive {Cu4I6} clusters have been synthesized from alkyl-tris(2-pyridyl)phosphonium halides, [R-PPy3]Hal, and CuI. The size of the alkyl substituent (R) has a dramatic impact on the structure of the clusters assembled. [Me-PPy3]I salt reacts with CuI (1 : 2) to give the ionic [Cu(Me-PPy3)I]2Cu2I4 complex consisting of the scorpionate [Cu(N,N',N''-Me-PPy3)I]+ cation. Under similar conditions, [Pr-PPy3]I forms the zwitterionic [Cu4I6(Pr-TPP)2] complex containing an unusual stepwise [Cu4I6] cluster core. The use of [Bu-PPy3]I or [Bn-PPy3]I in this reaction leads to zwitterionic [Cu4I6(R-TPP)2] complexes, in which a linear-shaped [Cu4I6] module appears. Photophysical studies supported by TD-DFT computations have revealed that the title complexes in the solid state at 298 K exhibit a red photoluminescence (λemmax = 620-650 nm) with short lifetimes (0.04-2.10 µs), which are assigned to the thermally activated delayed fluorescence (TADF) mixed with the cluster centered (3CC) phosphorescence. The compounds synthesized are the first red-emitting representatives of the recently discovered family of zwitterionic CuI-based complexes (so-called "AIO" structures).

3.
Chemistry ; 25(3): 806-816, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30084508

RESUMO

By means of cyclic voltammetry (CV) and DFT calculations, it was found that the electron-acceptor ability of 2,1,3-benzochalcogenadiazoles 1-3 (chalcogen: S, Se, and Te, respectively) increases with increasing atomic number of the chalcogen. This trend is nontrivial, since it contradicts the electronegativity and atomic electron affinity of the chalcogens. In contrast to radical anions (RAs) [1].- and [2].- , RA [3].- was not detected by EPR spectroscopy under CV conditions. Chemical reduction of 1-3 was performed and new thermally stable RA salts [K(THF)]+ [2].- (8) and [K(18-crown-6)]+ [2].- (9) were isolated in addition to known salt [K(THF)]+ [1].- (7). On contact with air, RAs [1].- and [2].- underwent fast decomposition in solution with the formation of anions [ECN]- , which were isolated in the form of salts [K(18-crown-6)]+ [ECN]- (10, E=S; 11, E=Se). In the case of 3, RA [3].- was detected by EPR spectroscopy as the first representative of tellurium-nitrogen π-heterocyclic RAs but not isolated. Instead, salt [K(18-crown-6)]+ 2 [3-Te2 ]2- (12) featuring a new anionic complex with coordinate Te-Te bond was obtained. On contact with air, salt 12 transformed into salt [K(18-crown-6)]+ 2 [3-Te4 -3]2- (13) containing an anionic complex with two coordinate Te-Te bonds. The structures of 8-13 were confirmed by XRD, and the nature of the Te-Te coordinate bond in [3-Te2 ]2- and [3-Te4 -3]2- was studied by DFT calculations and QTAIM analysis.

4.
Chemistry ; 23(67): 17037-17047, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28885741

RESUMO

A new approach to the synthesis of fused 1,2,3-thiaselenazoles-rare five-membered heterocycles that contain two different chalcogens-from the corresponding 1,2,3-dithiazoles and SeO2 was accomplished by selective exchange of S and Se atoms. The fused carbo- and heterocyclic units were indene, naphthalenone, cyclohexadienone, cyclopentadiene, benzoannulene, and benzoxazine. The molecular structures of two of the thiaselenadiazole products and one of the dithiazole precursors were confirmed by single-crystal X-ray diffraction. The reaction is highly solvent selective; it only takes place in solvents that contain a C=O group (e.g., DMF or tetramethylurea). According to DFT calculations, the reaction is thermodynamically favorable. Based on the DFT calculations and 77 Se NMR spectroscopy, two tentative mechanisms that feature isomeric transition states and intermediates are suggested for the reaction via ring-opening addition of SeO2 to the S-X dithiazole bond (X=N or S). The DFT-calculated first adiabatic electron affinities of the compounds were chalcogen independent and positive in all cases, which assumes formation of thermodynamically stable radical anions (RAs). These calculated RAs featured either normal or abnormal elongation of the S1-X2 (X=S or Se) bond relative to their neutral precursors and possessed π* or σ* SOMOs, respectively.

5.
Chemistry ; 23(4): 852-864, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27958639

RESUMO

The design and synthesis of novel charge-transfer (CT) complexes are of interest for fundamental chemistry and applications to materials science. In addition to the recently described first CT complex with both electron acceptor (A) and donor (D) groups belonging to the 1,2,5-thiadiazole series (1; A: 4-nitro-2,1,3-benzothiadiazole; D: 4-amino-2,1,3-benzothiadiazole), herein novel CT complexes 2 and 3 with 1,2,5-thiadiazoles as both A (4,6-dinitro-2,1,3-benzothiadiazole and [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole) and D (4-amino-2,1,3-benzothiadiazole) were synthesized. The series is completed by complex 4 with [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole as A and phenoxatellurine as D. Structures of complexes 2-4 were characterized by single-crystal X-ray diffraction (XRD), as well as solution and solid-state UV/Vis spectroscopy. Thermodynamics of their formation were obtained by density functional theory (DFT) calculations, their bonding situations were analyzed by quantum theory of atoms in molecules (QTAIM) calculations and dimer model energies of interactions quantified in the framework of the Hirshfeld surface (HS) analysis. With DFT calculations, the largest value of CT between D and A was found for complex 2, with 0.027 e in the XRD structure and 0.150 e in the optimized structure in MeCN. In the UV/Vis spectra, the λmax of the CT bands of 2-4 varied in the range λ=517-705 nm. Model energy calculations for 1-4 revealed the importance of both dispersion interactions and hydrogen bonding between D and A as contributors to CT in the crystalline state. In an attempt to enlarge the CT value with bis[1,2,5-thiadiazolo][3,4-b;3',4'-e]pyrazine as A and 4-amino-2,1,3-benzoselenadiazole as D, an unprecedented 1:1 addition reaction was observed upon formation of a C-N bond between atom C7 of D and pyrazine atom N4 of A, accompanied by hydrogen atom transfer from C7 to another pyrazine atom N8 (compound 5). According to DFT calculations, the reaction is a multistep process featuring diradical intermediates and hydrogen atom intramolecular migration over four positions. Molecular and crystal structures of 5 (solvate with toluene) were elucidated by XRD and the crystal structure revealed a rather unusual porous framework.

6.
Inorg Chem ; 51(8): 4747-55, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22458553

RESUMO

The photochemistry of tetrasulfur tetranitride (1) was studied in hexane solution by the laser flash photolysis technique (LFP). The experimental findings were interpreted using the results of previous matrix isolation studies (Pritchina, E.A.; Gritsan, N.P.; Bally, T.; Zibarev, A.V. Inorg. Chem. 2009, 48, 4075) and high-level quantum chemical calculations. LFP produces two primary intermediates, one of which is the boat-shaped 8-membered cyclic compound (2) and the other is the 6-membered S(3)N(3) cyclic compound carrying an exocyclic (S)-N═S group (3). The primary products 2 and 3 absorb a second photon and undergo transformation to the 6-membered S(3)N(3) cycle carrying an exocyclic (N)-S≡N group (4), which is very unstable and converts back to intermediate 3. The quantum yield of the primary product formation is close to unity even though the quantum yield of photodegradation of 1 is low (~0.01). Thus, 1 is a photochromic compound undergoing in solution the thermally reversible photochemical isomerization. The mechanism of the photochromic process was established, and the rate constants of the elementary reactions were measured.

7.
J Am Chem Soc ; 133(25): 9751-61, 2011 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21548657

RESUMO

The photochemistry of 2-naphthoyl azide was studied in various solvents by femtosecond time-resolved transient absorption spectroscopy with IR and UV-vis detection. The experimental findings were interpreted with the aid of computational studies. Using polar and nonpolar solvents, the formation and decay of the first singlet excited state (S(1)) was observed by both time-resolved techniques. Three processes are involved in the decay of the S(1) excited state of 2-naphthoyl azide: intersystem crossing, singlet nitrene formation, and isocyanate formation. The lifetime of the S(1) state decreases significantly as the solvent polarity increases. In all solvents studied, isocyanate formation correlates with the decay of the azide S(1) state. Nitrene formation correlates with the decay of the relaxed S(1) state only upon 350 nm excitation (S(0) → S(1) excitation). When S(n) (n ≥ 2) states are populated upon excitation (λ(ex) = 270 nm), most nitrene formation takes place within a few picoseconds through the hot S(1) and higher singlet excited states (S(n)) of 2-naphthoyl azide. The data correlate with the results of electron density difference calculations that predict nitrene formation from the higher-energy singlet excited states, in addition to the S(1) state. For all of these experiments, no recovery of the ground state was observed up to 3 ns after photolysis, which indicates that both internal conversion and fluorescence have very low efficiencies.

8.
Inorg Chem ; 49(16): 7558-64, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20690766

RESUMO

Decamethylchromocene, Cr(II)(eta(5)-C(5)(CH(3))(5))(2) (2), readily reduced [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole (1) in a tetrahydrofuran solvent at ambient temperature with the formation of radical-anion salt [2](+)[1](-) (3) isolated in 97% yield. The heterospin salt 3 ([2](+), S = 3/2; [1](-), S = 1/2) was characterized by single-crystal X-ray diffraction as well as magnetic susceptibility measurements in the temperature range 2-300 K. The experimental data together with theoretical analysis of the salt's magnetic structure within the CASSCF and spin-unrestricted broken-symmetry (BS) density functional theory (DFT) approaches revealed antiferromagnetic (AF) interactions in the crystalline 3: significant between anions [1](-), weak between cations [2](+), and very weak between [1](-) and [2](+). Experimental temperature dependences of the magnetic susceptibility and the effective magnetic moment of 3 were very well reproduced in the assumption of the AF-coupled [1](-)...[1](-) (J(1) = -40 +/- 9 cm(-1)) and [2](+)...[2](+) (J(2) = -0.58 +/- 0.03 cm(-1)) pairs. The experimental J(1) value is in reasonable agreement with the value calculated using BS UB3LYP/6-31+G(d) (-61 cm(-1)) and CASSCF(10,10)/6-31+G(d) (-15.3 cm(-1)) approaches. The experimental J(2) value is also in agreement with that calculated using the BS DFT approach (-0.33 cm(-1)).

9.
Inorg Chem ; 48(9): 4075-82, 2009 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-19338288

RESUMO

To elucidate the multifaceted but poorly understood chemistry of the pivotal polysulfur-nitrogen heterocycle, tetrasulfur tetranitride (S(4)N(4), 1), its photochemistry was studied in Ar matrices. Thereby two primary intermediates and a secondary one (2-4) were detected, and their UV-vis and IR spectra were identified through specific interconversions of 1-4 that can be induced by selective irradiations. The structures associated with these spectra were assigned with the help of DFT calculations. From these assignments it follows that, under the conditions of the present experiments, the cage structure of 1 transforms into isomeric structures 2-4, one of which is a boat-shaped 8-membered cycle (2), and the two other are novel 6-membered S(3)N(3) cycles carrying exocyclic (N)S[triple bond]N (3) or (S)N=S (4) groups, respectively, which have not been previously described. These three intermediates probably play a pivotal role in the formation of the diverse products that are observed in the reactions of S(4)N(4) even under mild reaction conditions.

10.
J Phys Chem A ; 111(42): 10483-9, 2007 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17894474

RESUMO

The primary photophysical and photochemical processes in the photochemistry of 1-acetoxy-2-methoxyanthraquinone (1a) were studied using femtosecond transient absorption spectroscopy. Excitation of 1a at 270 nm results in the population of a set of highly excited singlet states. Internal conversion to the lowest singlet npi* excited state, followed by an intramolecular vibrational energy redistribution (IVR) process, proceeds with a time constant of 150 +/- 90 fs. The 1npi* excited state undergoes very fast intersystem crossing (ISC, 11 +/- 1 ps) to form the lowest triplet pipi* excited state which contains excess vibrational energy. The vibrational cooling occurs somewhat faster (4 +/- 1 ps) than ISC. The primary photochemical process, migration of acetoxy group, proceeds on the triplet potential energy surface with a time constant of 220 +/- 30 ps. The transient absorption spectra of the lowest singlet and triplet excited states of 1a, as well as the triplet excited state of the product, 9-acetoxy-2-methoxy-1,10-anthraquinone (2a), were detected. The assignments of the transient absorption spectra were supported by time-dependent DFT calculations of the UV-vis spectra of the proposed intermediates. All of the stationary points for acyl group migration on the triplet and ground state singlet potential energy surfaces were localized, and the influence of the acyl group substitution on the rate constants of the photochemical and thermal processes was analyzed.


Assuntos
Algoritmos , Antraquinonas/química , Fotoquímica , Teoria Quântica , Absorção , Cinética , Modelos Químicos , Análise Espectral , Termodinâmica
11.
J Phys Chem A ; 111(5): 817-24, 2007 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-17266221

RESUMO

Photolysis of 1,3,2,4-benzodithiadiazine (1) at ambient temperature yields stable 1,2,3-benzodithiazolyl radicals. In order to reveal the mechanism of this unusual transformation, the photochemistry of 1 was studied in argon matrices using IR and UV-vis spectroscopy. A series of intermediates, including four- and five-membered heterocyclic and o-quinoid acyclic species, were characterized spectroscopically with the help of quantum chemical calculations. With selective irradiation, these intermediates can be mutually interconverted as well as converted back to the starting compound 1.


Assuntos
Argônio/química , Benzotiadiazinas/química , Simulação por Computador , Lasers , Modelos Químicos , Benzotiadiazinas/efeitos da radiação , Benzotiazóis/química , Benzotiazóis/efeitos da radiação , Radicais Livres/química , Radicais Livres/efeitos da radiação , Estrutura Molecular , Fotoquímica , Fotólise , Teoria Quântica , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
12.
Phys Chem Chem Phys ; 8(6): 719-27, 2006 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-16482312

RESUMO

The photochemistry of p-azidoaniline was studied in argon matrices in the absence and presence of oxygen. With the help of quantum chemical calculations we were able to characterize the triplet p-aminophenylnitrene as well as the cis- and trans-p-aminophenylnitroso oxides. It was found that the latter two isomers can be interconverted by selective irradiation and that they are ultimately converted into p-nitroaniline. Although restricted wavefunctions of the nitroso oxides are unstable, CASSCF calculations turned up no evidence for the claimed diradical character of these compounds. Also we found no evidence for dioxaziridines as intermediates of the conversion of the nitroso oxides to p-nitroaniline.


Assuntos
Compostos de Anilina/química , Compostos Azo/química , Simulação por Computador , Modelos Químicos , Compostos de Anilina/síntese química , Compostos de Anilina/efeitos da radiação , Argônio/química , Compostos Azo/síntese química , Compostos Azo/efeitos da radiação , Estrutura Molecular , Compostos Nitrosos/química , Oxigênio/química , Fotoquímica , Fotólise , Teoria Quântica , Raios Ultravioleta
13.
Chemistry ; 9(7): 1639-44, 2003 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-12658663

RESUMO

The photolysis of 1-aryloxy-2-azidoanthraquinones (3) in benzene is described herein which gave 1-hydroxy-2-arylaminoanthraquinones (4) and two types of 5H-naphtho[2,3-c]phenoxazine-8,13-diones (5 and 6). Thermolysis of 3 yielded only one of phenoxazines 5 and small amount of 4. On the other hand thermolysis of 3 in the presence of phenols gave phenoxazine 6 as a major product. The mechanism of the photolysis and thermolysis of 2-azido-1-aryloxyanthraquinones (3) is proposed and supported by the results from semiempirical calculations. A relative contribution of the primary photoreactions-azido group dissociation and aryl group migration was estimated to be 3:1. Photolysis and thermolysis of 4-azido-1-(p-tert-butylphenoxy)-9,10-anthraquinone (8) gave 3-(p-tert-butylphenoxy)-anthra[1,9-cd]-izoxazole-6-one (9) as the only product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...