Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202408284, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979690

RESUMO

We study by femtosecond infrared spectroscopy the ultrafast and persistent photoinduced phase transition of the Rb0.94Mn0.94Co0.06[Fe(CN)6]0.98∙0.2H2O material, induced at room temperature by a single laser shot. This system exhibits a charge-transfer based phase transition with a 75 K wide thermal hysteresis, centred at room temperature, from the low temperature Mn3+-N-C-Fe2+ tetragonal phase to the high temperature Mn2+-N-C-Fe3+ cubic phase. At room temperature, the photoinduced phase transition is persistent. However, the out-of-equilibrium dynamics leading to this phase is multi-scale. Femtosecond infrared spectroscopy, particularly sensitive to local reorganizations through the evolution of the frequency of the N-C vibration modes with the different characteristic electronic states, reveals that at low laser fluence and on short time scale, the photoexcitation of the Mn3+-N-C-Fe2+ phase creates small charge-transfer polarons [Mn2+-N-C-Fe3+]* within ≃ 250 fs. The local trapping of photoinduced intermetallic charge-transfer is characterized by the appearance of a polaronic infrared band, due to the surrounding Mn2+-N-C-Fe2+ species. Above a threshold fluence, when a critical fraction of small CT-polarons is reached, the macroscopic phase transition to the persistent Mn2+-N-C-Fe3+ cubic phase occurs within ≃ 100 ps. This non-linear photo-response results from elastic cooperativity, intrinsic to a switchable lattice and reminiscent of a feedback mechanism.

2.
Nat Commun ; 15(1): 4600, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816382

RESUMO

Electron transfer is a fundamental energy conversion process widely present in synthetic, industrial, and natural systems. Understanding the electron transfer process is important to exploit the uniqueness of the low-dimensional van der Waals (vdW) heterostructures because interlayer electron transfer produces the function of this class of material. Here, we show the occurrence of an electron transfer process in one-dimensional layer-stacking of carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). This observation makes use of femtosecond broadband optical spectroscopy, ultrafast time-resolved electron diffraction, and first-principles theoretical calculations. These results reveal that near-ultraviolet photoexcitation induces an electron transfer from the conduction bands of CNT to BNNT layers via electronic decay channels. This physical process subsequently generates radial phonons in the one-dimensional vdW heterostructure material. The gathered insights unveil the fundamentals physics of interfacial interactions in low dimensional vdW heterostructures and their photoinduced dynamics, pushing their limits for photoactive multifunctional applications.

3.
Nat Commun ; 15(1): 267, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267429

RESUMO

Ultrafast photoinduced phase transitions at room temperature, driven by a single laser shot and persisting long after stimuli, represent emerging routes for ultrafast control over materials' properties. Time-resolved studies provide fundamental mechanistic insight into far-from-equilibrium electronic and structural dynamics. Here we study the photoinduced phase transformation of the Rb0.94Mn0.94Co0.06[Fe(CN)6]0.98 material, designed to exhibit a 75 K wide thermal hysteresis around room temperature between MnIIIFeII tetragonal and MnIIFeIII cubic phases. We developed a specific powder sample streaming technique to monitor by ultrafast X-ray diffraction the structural and symmetry changes. We show that the photoinduced polarons expand the lattice, while the tetragonal-to-cubic photoinduced phase transition occurs within 100 ps above threshold fluence. These results are rationalized within the framework of the Landau theory of phase transition as an elastically-driven and cooperative process. We foresee broad applications of the streaming powder technique to study non-reversible and ultrafast dynamics.

4.
Faraday Discuss ; 237(0): 389-405, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35665795

RESUMO

Triggering new stable macroscopic orders in materials by ultrafast optical or terahertz pump pulses is a difficult challenge, complicated by the interplay between multiscale microscopic mechanisms, and macroscopic excitation profiles in samples. In particular, the differences between the two types of excitations are still unclear. In this article, we compare the optical response on acoustic timescale of a V2O3 Paramagnetic Metallic (PM) thin film excited by a terahertz (THz) pump or an optical pump, at room temperature. We show that the penetration depth of the deposited energy has a strong influence on the shape of the optical transmission signal, consistent with the modulation of permittivity by the superposition of depth-dependent static strain, and dynamical strain waves travelling back and forth in the sample layer. In particular, the temporal modulation of the optical transmission directly reflects the excitation profile as a function of depth, as well as the sign of the acoustic reflection coefficient between the film and the substrate. The acoustic mismatch between the V2O3 layer and the substrate was also measured. The raw data were interpreted with a one-dimensional analytical model, using three fitting parameters only. These results are discussed in the context of triggering phase transitions by ultrafast pump pulses. To the best of our knowledge, this is the first report of the modulation of the optical transmission of V2O3 with a THz pump within the acoustic timescale.

5.
Nano Lett ; 22(11): 4362-4367, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35587204

RESUMO

Herein we describe a novel spinning pump-probe photoacoustic technique developed to study nonlinear absorption in thin films. As a test case, an organic polycrystalline thin film of quinacridone, a well-known pigment, with a thickness in the tens of nanometers range, is excited by a femtosecond laser pulse which generates a time-domain Brillouin scattering signal. This signal is directly related to the strain wave launched from the film into the substrate and can be used to quantitatively extract the nonlinear optical absorption properties of the film itself. Quinacridone exhibits both quadratic and cubic laser fluence dependence regimes which we show to correspond to two- and three-photon absorption processes. This technique can be broadly applied to materials that are difficult or impossible to characterize with conventional transmittance-based measurements including materials at the nanoscale, prone to laser damage, with very weak nonlinear properties, opaque, or highly scattering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...