Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 215(0): 123-140, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-30993272

RESUMO

To explore the influence of a biologically inspired second and outer coordination sphere on Rh-bis(diphosphine) CO2 hydrogenation catalysts, a series of five complexes were prepared by varying the substituents on the pendant amine in the P(Et)2CH2NRCH2P(Et)2 ligands (PEtNRPEt), where R consists of methyl ester modified amino acids, including three neutral (glycine methyl ester (GlyOMe), leucine methyl ester (LeuOMe), and phenylalanine methyl ester (PheOMe)), one acidic (aspartic acid dimethyl ester (AspOMe)) and one basic (histidine methyl ester (MeHisOMe)) amino acid esters. The turnover frequencies (TOFs) for CO2 hydrogenation for each of these complexes were compared to those of the non-amino acid containing [Rh(depp)2]+ (depp) and [Rh(PEtNMePEt)2]+ (NMe) complexes. Each complex is catalytically active for CO2 hydrogenation to formate under mild conditions in THF. Catalytic activity spanned a factor of four, with the most active species being the NMe catalyst, while the slowest were the GlyOMe and the AspOMe complexes. When compared to a similar set of catalysts with phenyl-substituted phosphorous groups, a clear contribution of the outer coordination sphere is seen for this family of CO2 hydrogenation catalysts.


Assuntos
Aminoácidos/química , Dióxido de Carbono/química , Complexos de Coordenação/química , Fosfinas/química , Ródio/química , Complexos de Coordenação/síntese química , Técnicas Eletroquímicas , Hidrogenação , Conformação Molecular
2.
J Coord Chem ; 69(11-13): 1730-1747, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-33093711

RESUMO

Building on our recent report of an active H2 production catalyst [Ni(PPh 2NProp-peptide)2]2+ (Prop = para-phenylpropionic acid, peptide (R10) = WIpPRWTGPR-NH2, p = D-proline and P2N = 1-aza-3,6-diphosphacycloheptane) that contains structured ß-hairpin peptides, here we investigate how H2 production is effected by: (1) the length of the hairpin (eight or ten residues) and (2) limiting the flexibility between the peptide and the core complex by altering the length of the linker: para-phenylpropionic acid (three carbons) or para-benzoic acid (one carbon). Reduction of the peptide chain length from ten to eight residues increases or maintains the catalytic current for H2 production for all complexes, suggesting a non-productive steric interaction at longer peptide lengths. While the structure of the hairpin appears largely intact for the complexes, NMR data are consistent with differences in dynamic behavior which may contribute to the observed differences in catalytic activity. Molecular dynamics simulations demonstrate that complexes with a one-carbon linker have the desired effect of restricting the motion of the hairpin relative to the complex; however, the catalytic currents are significantly reduced compared to complexes containing a three-carbon linker as a result of the electron withdrawing nature of the -COOH group. These results demonstrate the complexity and interrelated nature of the outer coordination sphere on catalysis.

3.
Dalton Trans ; 44(33): 14854-64, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26223209

RESUMO

Inspired by nature's ability to regulate catalysis using physiological stimuli, azobenzene was incorporated into Rh(bis)diphosphine CO2 hydrogenation catalysts to photoinitiate structural changes to modulate the resulting catalytic activity. The rhodium bound diphosphine ligands (P(Ph2)-CH2-N(R)-CH2-P(Ph2)) contain the terminal amine of a non-natural amino acid, with the R-group being either ß-alanine (ß-Ala) or γ-aminobutyric acid (GABA). For both ß-Ala and GABA containing complexes, the carboxylic acids of the amino acids were coupled to the amines of diaminoazobenzene, creating a complex consisting of a rhodium bound to a photo-responsive tetradentate ligand. The photo-induced cis-trans isomerization of the azobenzene-containing complexes imposes structural changes on these complexes, as evidenced by NMR studies. We found that the CO2 hydrogenation activity for the ß-Ala bound rhodium complex is 40% faster at 27 °C with the light on, i.e. azobenzene in the cis-conformation (TOF = 16 s(-1)) than when the complex was in the dark and the azobenzene in the trans-conformation (TOF = 11 s(-1)). In contrast the γ-aminobutyric acid containing rhodium complex has the same rate (TOF ∼17 s(-1)) with the azobenzene in either the cis or the trans-conformation at 27 °C. The corresponding (bis)diphosphine complexes without the attached azobenzene were also prepared, characterized, and catalytically tested for comparison, and have TOF's of 30 s(-1). Computational studies were undertaken to evaluate if the difference in rate between the cis- and trans-azobenzene isomers for the ß-Ala bound rhodium complex were due to structural differences. These computational investigations revealed major structural changes between all cis- and trans-azobenzene structures, but only minor structural changes that would be unique to the ß-Ala bound rhodium complex. We postulate that the different rates between the cis- and trans-azobenzene ß-Ala bound containing rhodium complexes are due to subtle changes in the bite angle arising from steric strain due to the azobenzene-containing tetradentate ligand. This strain alters the hydricity of the subsequent rhodium hydride and consequently the rate.

4.
ACS Macro Lett ; 2(7): 571-574, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35581783

RESUMO

Polyisobutylene (PIB)-bound ruthenium bipyridine [Ru(PIB-bpy)3]2+ metal complexes were prepared from PIB ligands formed by alkylation of 4,4'-dimethylbipyridine with polyisobutylene bromide. The product Ru(PIB-bpy)3Cl2 complexes with at least one PIB ligand per bipyridine unit function as soluble recyclable photoredox catalysts in free radical polymerization of acrylate monomers under visible light irradiation at 25 °C with ethyl 2-bromoisobutyrate as the initiator in the presence of diisopropylethylamine. The polyacrylate products contained only about 1 ppm Ru contamination. This PIB-bound catalyst was recyclable and showed about 50-fold less Ru leaching as compared to Ru leaching in a polymerization catalyzed by the low molecular weight Ru catalyst, Ru(bpy)3(PF6)2.

5.
J Am Chem Soc ; 134(36): 14714-7, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22924456

RESUMO

The studies described here show that a relatively low molecular weight, narrow polydispersity polyethylene (PE) wax (Polywax) can serve as a nontoxic and nonvolatile alternative to alkane solvents in monophasic catalytic organic reactions where catalysts and products are separated under biphasic conditions. In this application, a polymer that is a solid at room temperature substitutes for a conventional alkane solvent at ca. 80 °C. In addition to the advantages of being a nonvolatile, nontoxic, reusable solvent, this hydrocarbon polymer solvent, like heptane, can sequester nonpolar soluble polymer-bound catalysts after a reaction and separate them from products. The extent of this separation and its generality were studied using polyisobutylene (PIB)- and poly(4-dodecylstyrene)-bound dyes and PE-bound Pd allylic substitution catalysts, PIB-bound Pd cross-coupling catalysts, and PE- and PIB-bound metathesis catalysts. Catalytic reactions were effected using single-phase reaction mixtures containing Polywax with toluene, THF, or THF/DMF at ca. 80 °C. These solutions either separate into two liquid phases on addition of a perturbing agent or separate as a solid/liquid mixture on cooling. The hydrocarbon polymer-bound dyes or catalysts either separate into the hot liquid Polywax phase or coprecipitate with Polywax and are subsequently isolated as a nonvolatile Polywax solid phase that contains the dye or the recyclable catalyst.


Assuntos
Compostos Organometálicos/química , Compostos Organometálicos/isolamento & purificação , Polietileno/química , Catálise , Estrutura Molecular , Paládio/química , Polienos/química , Polímeros/química , Solventes/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...