Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38687455

RESUMO

Investigation on accumulation of cell wall components over critical growth stages will surely provide a new insight into dry matter accumulation studies in rice. An elevated biomass production provides an alternative strategy of yield improvement, which in turn maneuvers the species concerned as potential dual-purpose crop. On that note, present study was carried on 33 early and 39 medium duration rice genotypes. The average cellulose accumulation was 6.51% and 8.17% in early and medium duration genotypes, respectively, at flowering stage, which later on dipped to 1.43% and 3.46%, respectively, at physiological maturity. The gene specific marker MDgsp-5.a exhibited highest estimate of polymorphic information content (PIC), i.e., 0.685, closely followed by MDgsp-6.a with polymorphic information content (PIC) of 0.683. The control genotypes, i.e., Pratap and Mandakini, are grouped under the same cluster, i.e., Cluster-I.A, indicating their inherent genetic divergence from that of potential accumulators pertaining to cellulose accumulation. Pratap and Mandakini failed to produce peaks of conspicuous form at 3342 cm-1 and 1635 cm-1, bearing out by their low performance pertaining to cellulose and lignin accumulation at the later stages of development, respectively. From histochemistry studies, it was observed that the cell walls of sclerenchyma, peripheral vascular bundles, and parenchyma of the culm transections in control genotypes stained lightly than that of prolific accumulator cell walls, thus corroborating the findings of compositional analysis. The variation in cell wall thickening is primarily accounted due to altered carbohydrate accumulation across the growth stages as explored under scanning electron micrograph.

2.
RSC Adv ; 14(14): 10089-10103, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38566836

RESUMO

The exponential growth of industrial activities has led to a significant rise in the release of organic effluents, containing hazardous heavy metals and dyes, into the environment. These pollutants exhibit resistance to conventional biodegradation processes and are associated with carcinogenic properties, posing a severe threat to living organisms. In this context, the present research endeavours to address this environmental challenge through the development of an affordable and efficient photocatalyst, the Co3O4/reduced graphene oxide/biochar (CBG-10) heterostructure. The structural analysis of CBG-10, conducted through various techniques such as XRD, XPS, SEM, and optical property measurements, demonstrates its potential as a highly effective and easily recoverable catalyst for the mineralization of persistent pollutants like methylene blue, malachite green, and hexavalent Cr(vi). The recyclability of CBG-10 was confirmed through XRD studies, highlighting its stability and practical usability in wastewater purification. The photocatalytic behaviour of the catalyst was attributed to the generation of hydroxyl (˙OH) and superoxide radicals (˙O2-) during visible light illumination, as revealed by quenching experiments. The cost-effectiveness and stability of CBG-10 position it as a promising solution for addressing the challenges associated with the removal of stubborn organic contaminants from wastewater, thereby contributing to environmental protection and public health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...