Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 248: 125888, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37473898

RESUMO

Konjac glucomannan (KGM), a dietary fiber hydrocolloid polysaccharide isolated from Amorphophallus konjac tubers, has potential applications in various fields. However, the use of KGM-based hydrogels has mainly focused on the food, biomedical, and water treatment industries. KGM possesses several health benefits and could be a promising candidate for use in edible electronics. This paper presents the first review of KGM-based hydrogels as edible electronics and their potential health benefits. The paper initially focuses on the health-promoting effects of KGM-based hydrogels, such as prebiotic effects, antiobesity, antioxidant, and antibacterial properties. Then, it discusses the feasible design strategies for KGM-based hydrogels as edible electronics, considering their flexibility, mechanical properties, response to stimuli, degradability aspects, their role as electronic device components, and the retention period of the devices. Finally, this review outlines future directions for developing KGM-based hydrogels for use in edible electronics.


Assuntos
Amorphophallus , Hidrogéis , Hidrogéis/farmacologia , Mananas/farmacologia , Polissacarídeos , Prebióticos
2.
ACS Omega ; 8(14): 13342-13351, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37065082

RESUMO

This study describes a sensor based on quartz crystal microbalance (QCM) coated by polyacrylonitrile (PAN) nanofibers containing nickel nanoparticles for methanol gas detection. The PAN/nickel nanofibers composites were made via electrospinning and electrospray methods. The QCM sensors coated with the PAN/nickel nanofiber composite were evaluated for their sensitivities, selectivities, and stabilities. The morphologies and elemental compositions of the sensors were examined using a scanning electron microscope-energy dispersive X-ray. A Fourier Transform Infrared spectrometer was used to investigate the elemental bonds within the nanofiber composites. The QCM sensors coated with PAN/nickel nanofibers offered a high specific surface area to enhance the QCM sensing performance. They exhibited excellent sensing characteristics, including a high sensitivity of 389.8 ± 3.8 Hz/SCCM, response and recovery times of 288 and 251 s, respectively, high selectivity for methanol compared to other gases, a limit of detection (LOD) of about 1.347 SCCM, and good long-term stability. The mechanism of methanol gas adsorption by the PAN/nickel nanofibers can be attributed to intermolecular interactions, such as the Lewis acid-base reaction by PAN nanofibers and hydrogen bonding by nickel nanoparticles. The results suggest that QCM-coated PAN/nickel nanofiber composites show great potential for the design of highly sensitive and selective methanol gas sensors.

3.
Insect Sci ; 30(6): 1827-1830, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36992653

RESUMO

From a physics perspective, paper wasps arrange larval systems in specific formations to attain mechanical stability for the nest. The closer the distance between the center of mass of the larval system (CML) and the center of mass of the nest (CMN), the lower the moment of force generated by the larval system, resulting in a more stable nest.


Assuntos
Vespas , Animais , Larva , Comportamento de Nidação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...