Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Am J Trop Med Hyg ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013372

RESUMO

Flea-borne spotted fever and flea-borne (murine) typhus are rickettsioses caused by Rickettsia felis and Rickettsia typhi, respectively, and typically present as undifferentiated febrile illnesses. The relative contribution of these agents to flea-borne rickettsioses in California is unclear. We have developed a duplex reverse transcription real-time polymerase chain reaction (RT-rtPCR) assay targeting R. felis- and R. typhi-specific 23S ribosomal RNA single nucleotide polymorphisms to better understand the respective roles of these agents in causing flea-borne rickettsioses in California. This assay was compared with an established duplex R. felis- and R. typhi-ompB rt-PCR assay and was shown to have 1,000-fold and 10-fold greater analytical sensitivity for the detection of R. felis and R. typhi, respectively. Retrospective testing of clinical specimens with both assays established R. typhi as the major etiologic agent of flea-borne rickettsioses in California.

2.
Epidemics ; 47: 100775, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838462

RESUMO

Across many fields, scenario modeling has become an important tool for exploring long-term projections and how they might depend on potential interventions and critical uncertainties, with relevance to both decision makers and scientists. In the past decade, and especially during the COVID-19 pandemic, the field of epidemiology has seen substantial growth in the use of scenario projections. Multiple scenarios are often projected at the same time, allowing important comparisons that can guide the choice of intervention, the prioritization of research topics, or public communication. The design of the scenarios is central to their ability to inform important questions. In this paper, we draw on the fields of decision analysis and statistical design of experiments to propose a framework for scenario design in epidemiology, with relevance also to other fields. We identify six different fundamental purposes for scenario designs (decision making, sensitivity analysis, situational awareness, horizon scanning, forecasting, and value of information) and discuss how those purposes guide the structure of scenarios. We discuss other aspects of the content and process of scenario design, broadly for all settings and specifically for multi-model ensemble projections. As an illustrative case study, we examine the first 17 rounds of scenarios from the U.S. COVID-19 Scenario Modeling Hub, then reflect on future advancements that could improve the design of scenarios in epidemiological settings.


Assuntos
COVID-19 , Técnicas de Apoio para a Decisão , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Previsões , SARS-CoV-2 , Doenças Transmissíveis/epidemiologia , Pandemias/prevenção & controle , Tomada de Decisões , Projetos de Pesquisa
3.
Epidemics ; 47: 100767, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714099

RESUMO

Mathematical models are useful for public health planning and response to infectious disease threats. However, different models can provide differing results, which can hamper decision making if not synthesized appropriately. To address this challenge, multi-model hubs convene independent modeling groups to generate ensembles, known to provide more accurate predictions of future outcomes. Yet, these hubs are resource intensive, and how many models are sufficient in a hub is not known. Here, we compare the benefit of predictions from multiple models in different contexts: (1) decision settings that depend on predictions of quantitative outcomes (e.g., hospital capacity planning), where assessments of the benefits of multi-model ensembles have largely focused; and (2) decisions settings that require the ranking of alternative epidemic scenarios (e.g., comparing outcomes under multiple possible interventions and biological uncertainties). We develop a mathematical framework to mimic a multi-model prediction setting, and use this framework to quantify how frequently predictions from different models agree. We further explore multi-model agreement using real-world, empirical data from 14 rounds of U.S. COVID-19 Scenario Modeling Hub projections. Our results suggest that the value of multiple models could be different in different decision contexts, and if only a few models are available, focusing on the rank of alternative epidemic scenarios could be more robust than focusing on quantitative outcomes. Although additional exploration of the sufficient number of models for different contexts is still needed, our results indicate that it may be possible to identify decision contexts where it is robust to rely on fewer models, a finding that can inform the use of modeling resources during future public health crises.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Doenças Transmissíveis/epidemiologia , COVID-19/epidemiologia , Epidemias/estatística & dados numéricos , SARS-CoV-2 , Modelos Teóricos , Modelos Epidemiológicos , Saúde Pública , Previsões/métodos
4.
Lancet Microbe ; 5(1): e62-e71, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081203

RESUMO

BACKGROUND: In the last decade, universally available antiretroviral therapy (ART) has led to greatly improved health and survival of people living with HIV in sub-Saharan Africa, but new infections continue to appear. The design of effective prevention strategies requires the demographic characterisation of individuals acting as sources of infection, which is the aim of this study. METHODS: Between 2014 and 2018, the HPTN 071 PopART study was conducted to quantify the public health benefits of ART. Viral samples from 7124 study participants in Zambia were deep-sequenced as part of HPTN 071-02 PopART Phylogenetics, an ancillary study. We used these sequences to identify likely transmission pairs. After demographic weighting of the recipients in these pairs to match the overall HIV-positive population, we analysed the demographic characteristics of the sources to better understand transmission in the general population. FINDINGS: We identified a total of 300 likely transmission pairs. 178 (59·4%) were male to female, with 130 (95% CI 110-150; 43·3%) from males aged 25-40 years. Overall, men transmitted 2·09-fold (2·06-2·29) more infections per capita than women, a ratio peaking at 5·87 (2·78-15·8) in the 35-39 years source age group. 40 (26-57; 13·2%) transmissions linked individuals from different communities in the trial. Of 288 sources with recorded information on drug resistance mutations, 52 (38-69; 18·1%) carried viruses resistant to first-line ART. INTERPRETATION: HIV-1 transmission in the HPTN 071 study communities comes from a wide range of age and sex groups, and there is no outsized contribution to new infections from importation or drug resistance mutations. Men aged 25-39 years, underserved by current treatment and prevention services, should be prioritised for HIV testing and ART. FUNDING: National Institute of Allergy and Infectious Diseases, US President's Emergency Plan for AIDS Relief, International Initiative for Impact Evaluation, Bill & Melinda Gates Foundation, National Institute on Drug Abuse, and National Institute of Mental Health.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Adulto , Feminino , Humanos , Masculino , Demografia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , HIV-1/genética , Epidemiologia Molecular , Estados Unidos , Zâmbia/epidemiologia
5.
medRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873156

RESUMO

Across many fields, scenario modeling has become an important tool for exploring long-term projections and how they might depend on potential interventions and critical uncertainties, with relevance to both decision makers and scientists. In the past decade, and especially during the COVID-19 pandemic, the field of epidemiology has seen substantial growth in the use of scenario projections. Multiple scenarios are often projected at the same time, allowing important comparisons that can guide the choice of intervention, the prioritization of research topics, or public communication. The design of the scenarios is central to their ability to inform important questions. In this paper, we draw on the fields of decision analysis and statistical design of experiments to propose a framework for scenario design in epidemiology, with relevance also to other fields. We identify six different fundamental purposes for scenario designs (decision making, sensitivity analysis, value of information, situational awareness, horizon scanning, and forecasting) and discuss how those purposes guide the structure of scenarios. We discuss other aspects of the content and process of scenario design, broadly for all settings and specifically for multi-model ensemble projections. As an illustrative case study, we examine the first 17 rounds of scenarios from the U.S. COVID-19 Scenario Modeling Hub, then reflect on future advancements that could improve the design of scenarios in epidemiological settings.

6.
Emerg Infect Dis ; 29(9): 1738-1746, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37610124

RESUMO

We engaged in a participatory modeling approach with health sector stakeholders in Jordan to support government decision-making regarding implementing public health measures to mitigate COVID-19 disease burden. We considered the effect of 4 physical distancing strategies on reducing COVID-19 transmission and mortality in Jordan during March 2020-January 2021: no physical distancing; intermittent physical distancing where all but essential services are closed once a week; intermittent physical distancing where all but essential services are closed twice a week; and a permanent physical distancing intervention. Modeling showed that the fourth strategy would be most effective in reducing cases and deaths; however, this approach was only marginally beneficial to reducing COVID-19 disease compared with an intermittently enforced physical distancing intervention. Scenario-based model influenced policy-making and the evolution of the pandemic in Jordan confirmed the forecasting provided by the modeling exercise and helped confirm the effectiveness of the policy adopted by the government of Jordan.


Assuntos
COVID-19 , Humanos , Jordânia/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Efeitos Psicossociais da Doença , Exercício Físico , Governo
7.
MMWR Morb Mortal Wkly Rep ; 72(31): 838-843, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37535465

RESUMO

Fleaborne typhus (also known as murine typhus), a widely distributed vectorborne zoonosis caused by Rickettsia typhi, is a moderately severe, but infrequently fatal illness; among patients who receive doxycycline, the case-fatality rate is <1%. Fleaborne typhus is a mandated reportable condition in California. Reported fleaborne typhus cases in Los Angeles County have been increasing since 2010, with the highest number (171) reported during 2022. During June-October 2022, Los Angeles County Department of Public Health learned of three fleaborne typhus-associated deaths. This report describes the clinical presentation, illness course, and methods used to diagnose fleaborne typhus in these three cases. Severe fleaborne typhus manifestations among these cases included hemophagocytic lymphohistiocytosis, a rare immune hyperactivation syndrome that can occur in the infection setting; myocarditis; and septic shock with disseminated intravascular coagulation. Increased health care provider and public health awareness of the prevalence and severity of fleaborne typhus and of the importance of early doxycycline therapy is essential for prevention and treatment efforts.


Assuntos
Tifo Endêmico Transmitido por Pulgas , Tifo Epidêmico Transmitido por Piolhos , Camundongos , Humanos , Doxiciclina/uso terapêutico , Los Angeles/epidemiologia , Tifo Endêmico Transmitido por Pulgas/epidemiologia , Tifo Endêmico Transmitido por Pulgas/diagnóstico , Tifo Endêmico Transmitido por Pulgas/microbiologia , Rickettsia typhi , Animais
8.
SSM Popul Health ; 23: 101473, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37575363

RESUMO

Background: HIV treatment has clear Health-Related Quality-of-Life (HRQoL) benefits. However, little is known about how Universal Testing and Treatment (UTT) for HIV affects HRQoL. This study aimed to examine the effect of a combination prevention intervention, including UTT, on HRQoL among People Living with HIV (PLHIV). Methods: Data were from HPTN 071 (PopART), a three-arm cluster randomised controlled trial in 21 communities in Zambia and South Africa (2013-2018). Arm A received the full UTT intervention of door-to-door HIV testing plus access to antiretroviral therapy (ART) regardless of CD4 count, Arm B received the intervention but followed national treatment guidelines (universal ART from 2016), and Arm C received standard care. The intervention effect was measured in a cohort of randomly selected adults, over 36 months. HRQoL scores, and the prevalence of problems in five HRQoL dimensions (mobility, self-care, performing daily activities, pain/discomfort, anxiety/depression) were assessed among all participants using the EuroQol-5-dimensions-5-levels questionnaire (EQ-5D-5L). We compared HRQoL among PLHIV with laboratory confirmed HIV status between arms, using adjusted two-stage cluster-level analyses. Results: At baseline, 7,856 PLHIV provided HRQoL data. At 36 months, the mean HRQoL score was 0.892 (95% confidence interval: 0.887-0.898) in Arm A, 0.886 (0.877-0.894) in Arm B and 0.888 (0.884-0.892) in Arm C. There was no evidence of a difference in HRQoL scores between arms (A vs C, adjusted mean difference: 0.003, -0.001-0.006; B vs C: -0.004, -0.014-0.005). The prevalence of problems with pain/discomfort was lower in Arm A than C (adjusted prevalence ratio: 0.37, 0.14-0.97). There was no evidence of differences for other HRQoL dimensions. Conclusions: The intervention did not change overall HRQoL, suggesting that raising HRQoL among PLHIV might require more than improved testing and treatment. However, PLHIV had fewer problems with pain/discomfort under the full intervention; this benefit of UTT should be maximised during roll-out.

9.
Proc Natl Acad Sci U S A ; 120(18): e2207537120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098064

RESUMO

Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Incerteza , Surtos de Doenças/prevenção & controle , Saúde Pública , Pandemias/prevenção & controle
10.
J R Soc Interface ; 20(198): 20220659, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695018

RESUMO

Probabilistic predictions support public health planning and decision making, especially in infectious disease emergencies. Aggregating outputs from multiple models yields more robust predictions of outcomes and associated uncertainty. While the selection of an aggregation method can be guided by retrospective performance evaluations, this is not always possible. For example, if predictions are conditional on assumptions about how the future will unfold (e.g. possible interventions), these assumptions may never materialize, precluding any direct comparison between predictions and observations. Here, we summarize literature on aggregating probabilistic predictions, illustrate various methods for infectious disease predictions via simulation, and present a strategy for choosing an aggregation method when empirical validation cannot be used. We focus on the linear opinion pool (LOP) and Vincent average, common methods that make different assumptions about between-prediction uncertainty. We contend that assumptions of the aggregation method should align with a hypothesis about how uncertainty is expressed within and between predictions from different sources. The LOP assumes that between-prediction uncertainty is meaningful and should be retained, while the Vincent average assumes that between-prediction uncertainty is akin to sampling error and should not be preserved. We provide an R package for implementation. Given the rising importance of multi-model infectious disease hubs, our work provides useful guidance on aggregation and a deeper understanding of the benefits and risks of different approaches.


Assuntos
Doenças Transmissíveis , Humanos , Incerteza , Estudos Retrospectivos , Doenças Transmissíveis/epidemiologia , Simulação por Computador , Saúde Pública
11.
Epidemics ; 42: 100662, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36563470

RESUMO

The COVID-19 pandemic has provided stiff challenges for planning and resourcing in health services in the UK and worldwide. Epidemiological models can provide simulations of how infectious disease might progress in a population given certain parameters. We adapted an agent-based model of COVID-19 to inform planning and decision-making within a healthcare setting, and created a software framework that automates processes for calibrating the model parameters to health data and allows the model to be run at national population scale on National Health Service (NHS) infrastructure. We developed a method for calibrating the model to three daily data streams (hospital admissions, intensive care occupancy, and deaths), and demonstrate that on cross-validation the model fits acceptably to unseen data streams including official estimates of COVID-19 incidence. Once calibrated, we use the model to simulate future scenarios of the spread of COVID-19 in England and show that the simulations provide useful projections of future COVID-19 clinical demand. These simulations were used to support operational planning in the NHS in England, and we present the example of the use of these simulations in projecting future clinical demand during the rollout of the national COVID-19 vaccination programme. Being able to investigate uncertainty and test sensitivities was particularly important to the operational planning team. This epidemiological model operates within an ecosystem of data technologies, drawing on a range of NHS, government and academic data sources, and provides results to strategists, planners and downstream data systems. We discuss the data resources that enabled this work and the data challenges that were faced.


Assuntos
COVID-19 , Humanos , Medicina Estatal , Pandemias , Vacinas contra COVID-19 , Calibragem , Ecossistema , Atenção à Saúde
12.
Lancet HIV ; 9(11): e771-e780, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36332654

RESUMO

BACKGROUND: The long-term impact of universal home-based testing and treatment as part of universal testing and treatment (UTT) on HIV incidence is unknown. We made projections using a detailed individual-based model of the effect of the intervention delivered in the HPTN 071 (PopART) cluster-randomised trial. METHODS: In this modelling study, we fitted an individual-based model to the HIV epidemic and HIV care cascade in 21 high prevalence communities in Zambia and South Africa that were part of the PopART cluster-randomised trial (intervention period Nov 1, 2013, to Dec 31, 2017). The model represents coverage of home-based testing and counselling by age and sex, delivered as part of the trial, antiretroviral therapy (ART) uptake, and any changes in national guidelines on ART eligibility. In PopART, communities were randomly assigned to one of three arms: arm A received the full PopART intervention for all individuals who tested positive for HIV, arm B received the intervention with ART provided in accordance with national guidelines, and arm C received standard of care. We fitted the model to trial data twice using Approximate Bayesian Computation, once before data unblinding and then again after data unblinding. We compared projections of intervention impact with observed effects, and for four different scenarios of UTT up to Jan 1, 2030 in the study communities. FINDINGS: Compared with standard of care, a 51% (95% credible interval 40-60) reduction in HIV incidence is projected if the trial intervention (arms A and B combined) is continued from 2020 to 2030, over and above a declining trend in HIV incidence under standard of care. INTERPRETATION: A widespread and continued commitment to UTT via home-based testing and counselling can have a substantial effect on HIV incidence in high prevalence communities. FUNDING: National Institute of Allergy and Infectious Diseases, US President's Emergency Plan for AIDS Relief, International Initiative for Impact Evaluation, Bill & Melinda Gates Foundation, National Institute on Drug Abuse, and National Institute of Mental Health.


Assuntos
Epidemias , Infecções por HIV , Humanos , Teorema de Bayes , Epidemias/prevenção & controle , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , África do Sul/epidemiologia , Zâmbia/epidemiologia
13.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210314, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35965457

RESUMO

Mathematical modelling is used during disease outbreaks to compare control interventions. Using multiple models, the best method to combine model recommendations is unclear. Existing methods weight model projections, then rank control interventions using the combined projections, presuming model outputs are directly comparable. However, the way each model represents the epidemiological system will vary. We apply electoral vote-processing rules to combine model-generated rankings of interventions. Combining rankings of interventions, instead of combining model projections, avoids assuming that projections are comparable as all comparisons of projections are made within each model. We investigate four rules: First-past-the-post, Alternative Vote (AV), Coombs Method and Borda Count. We investigate rule sensitivity by including models that favour only one action or including those that rank interventions randomly. We investigate two case studies: the 2014 Ebola outbreak in West Africa (37 compartmental models) and a hypothetical foot-and-mouth disease outbreak in UK (four individual-based models). The Coombs Method was least susceptible to adding models that favoured a single action, Borda Count and AV were most susceptible to adding models that ranked interventions randomly. Each rule chose the same intervention as when ranking interventions by mean projections, suggesting that combining rankings provides similar recommendations with fewer assumptions about model comparability. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Assuntos
Surtos de Doenças , Modelos Teóricos , Animais , Surtos de Doenças/prevenção & controle
14.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210304, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35965459

RESUMO

The SARS-CoV-2 epidemic has been extended by the evolution of more transmissible viral variants. In autumn 2020, the B.1.177 lineage became the dominant variant in England, before being replaced by the B.1.1.7 (Alpha) lineage in late 2020, with the sweep occurring at different times in each region. This period coincided with a large number of non-pharmaceutical interventions (e.g. lockdowns) to control the epidemic, making it difficult to estimate the relative transmissibility of variants. In this paper, we model the spatial spread of these variants in England using a meta-population agent-based model which correctly characterizes the regional variation in cases and distribution of variants. As a test of robustness, we additionally estimated the relative transmissibility of multiple variants using a statistical model based on the renewal equation, which simultaneously estimates the effective reproduction number R. Relative to earlier variants, the transmissibility of B.1.177 is estimated to have increased by 1.14 (1.12-1.16) and that of Alpha by 1.71 (1.65-1.77). The vaccination programme starting in December 2020 is also modelled. Counterfactual simulations demonstrate that the vaccination programme was essential for reopening in March 2021, and that if the January lockdown had started one month earlier, up to 30 k (24 k-38 k) deaths could have been prevented. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Humanos , SARS-CoV-2/genética , Estações do Ano
15.
PLoS Comput Biol ; 17(10): e1009518, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710096

RESUMO

Stay-at-home orders and shutdowns of non-essential businesses are powerful, but socially costly, tools to control the pandemic spread of SARS-CoV-2. Mass testing strategies, which rely on widely administered frequent and rapid diagnostics to identify and isolate infected individuals, could be a potentially less disruptive management strategy, particularly where vaccine access is limited. In this paper, we assess the extent to which mass testing and isolation strategies can reduce reliance on socially costly non-pharmaceutical interventions, such as distancing and shutdowns. We develop a multi-compartmental model of SARS-CoV-2 transmission incorporating both preventative non-pharmaceutical interventions (NPIs) and testing and isolation to evaluate their combined effect on public health outcomes. Our model is designed to be a policy-guiding tool that captures important realities of the testing system, including constraints on test administration and non-random testing allocation. We show how strategic changes in the characteristics of the testing system, including test administration, test delays, and test sensitivity, can reduce reliance on preventative NPIs without compromising public health outcomes in the future. The lowest NPI levels are possible only when many tests are administered and test delays are short, given limited immunity in the population. Reducing reliance on NPIs is highly dependent on the ability of a testing program to identify and isolate unreported, asymptomatic infections. Changes in NPIs, including the intensity of lockdowns and stay at home orders, should be coordinated with increases in testing to ensure epidemic control; otherwise small additional lifting of these NPIs can lead to dramatic increases in infections, hospitalizations and deaths. Importantly, our results can be used to guide ramp-up of testing capacity in outbreak settings, allow for the flexible design of combined interventions based on social context, and inform future cost-benefit analyses to identify efficient pandemic management strategies.


Assuntos
COVID-19/prevenção & controle , Pandemias/prevenção & controle , SARS-CoV-2 , COVID-19/epidemiologia , Teste para COVID-19/métodos , Controle de Doenças Transmissíveis/métodos , Biologia Computacional , Simulação por Computador , Análise Custo-Benefício , Humanos , Modelos Biológicos , Distanciamento Físico
16.
PLoS Comput Biol ; 17(9): e1009301, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34473700

RESUMO

Mathematical models are powerful tools in HIV epidemiology, producing quantitative projections of key indicators such as HIV incidence and prevalence. In order to improve the accuracy of predictions, such models need to incorporate a number of behavioural and biological heterogeneities, especially those related to the sexual network within which HIV transmission occurs. An individual-based model, which explicitly models sexual partnerships, is thus often the most natural type of model to choose. In this paper we present PopART-IBM, a computationally efficient individual-based model capable of simulating 50 years of an HIV epidemic in a large, high-prevalence community in under a minute. We show how the model calibrates within a Bayesian inference framework to detailed age- and sex-stratified data from multiple sources on HIV prevalence, awareness of HIV status, ART status, and viral suppression for an HPTN 071 (PopART) study community in Zambia, and present future projections of HIV prevalence and incidence for this community in the absence of trial intervention.


Assuntos
Simulação por Computador , Infecções por HIV/epidemiologia , Modelos Estatísticos , Processos Estocásticos , Adolescente , Adulto , Idoso , Algoritmos , Terapia Antirretroviral de Alta Atividade , Progressão da Doença , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/transmissão , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Prevalência , Reprodutibilidade dos Testes , Adulto Jovem , Zâmbia/epidemiologia
17.
PLoS Comput Biol ; 17(7): e1009146, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34252083

RESUMO

SARS-CoV-2 has spread across the world, causing high mortality and unprecedented restrictions on social and economic activity. Policymakers are assessing how best to navigate through the ongoing epidemic, with computational models being used to predict the spread of infection and assess the impact of public health measures. Here, we present OpenABM-Covid19: an agent-based simulation of the epidemic including detailed age-stratification and realistic social networks. By default the model is parameterised to UK demographics and calibrated to the UK epidemic, however, it can easily be re-parameterised for other countries. OpenABM-Covid19 can evaluate non-pharmaceutical interventions, including both manual and digital contact tracing, and vaccination programmes. It can simulate a population of 1 million people in seconds per day, allowing parameter sweeps and formal statistical model-based inference. The code is open-source and has been developed by teams both inside and outside academia, with an emphasis on formal testing, documentation, modularity and transparency. A key feature of OpenABM-Covid19 are its Python and R interfaces, which has allowed scientists and policymakers to simulate dynamic packages of interventions and help compare options to suppress the COVID-19 epidemic.


Assuntos
COVID-19/prevenção & controle , Busca de Comunicante , Análise de Sistemas , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Teste para COVID-19 , Vacinas contra COVID-19/administração & dosagem , Surtos de Doenças , Humanos , Distanciamento Físico , Quarentena , SARS-CoV-2/isolamento & purificação
18.
PLoS Biol ; 19(6): e3001307, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34138840

RESUMO

More than 1.6 million Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) tests were administered daily in the United States at the peak of the epidemic, with a significant focus on individual treatment. Here, we show that objective-driven, strategic sampling designs and analyses can maximize information gain at the population level, which is necessary to increase situational awareness and predict, prepare for, and respond to a pandemic, while also continuing to inform individual treatment. By focusing on specific objectives such as individual treatment or disease prediction and control (e.g., via the collection of population-level statistics to inform lockdown measures or vaccine rollout) and drawing from the literature on capture-recapture methods to deal with nonrandom sampling and testing errors, we illustrate how public health objectives can be achieved even with limited test availability when testing programs are designed a priori to meet those objectives.


Assuntos
Monitoramento Epidemiológico , Pandemias , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teste para COVID-19 , Humanos , Pandemias/prevenção & controle , Saúde Pública , Alocação de Recursos , SARS-CoV-2/isolamento & purificação , Vigilância de Evento Sentinela , Estados Unidos/epidemiologia
19.
Lancet Glob Health ; 9(5): e668-e680, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33721566

RESUMO

BACKGROUND: The HPTN 071 (PopART) trial showed that a combination HIV prevention package including universal HIV testing and treatment (UTT) reduced population-level incidence of HIV compared with standard care. However, evidence is scarce on the costs and cost-effectiveness of such an intervention. METHODS: Using an individual-based model, we simulated the PopART intervention and standard care with antiretroviral therapy (ART) provided according to national guidelines for the 21 trial communities in Zambia and South Africa (for all individuals aged >14 years), with model parameters and primary cost data collected during the PopART trial and from published sources. Two intervention scenarios were modelled: annual rounds of PopART from 2014 to 2030 (PopART 2014-30; as the UNAIDS Fast-Track target year) and three rounds of PopART throughout the trial intervention period (PopART 2014-17). For each country, we calculated incremental cost-effectiveness ratios (ICERs) as the cost per disability-adjusted life-year (DALY) and cost per HIV infection averted. Cost-effectiveness acceptability curves were used to indicate the probability of PopART being cost-effective compared with standard care at different thresholds of cost per DALY averted. We also assessed budget impact by projecting undiscounted costs of the intervention compared with standard care up to 2030. FINDINGS: During 2014-17, the mean cost per person per year of delivering home-based HIV counselling and testing, linkage to care, promotion of ART adherence, and voluntary medical male circumcision via community HIV care providers for the simulated population was US$6·53 (SD 0·29) in Zambia and US$7·93 (0·16) in South Africa. In the PopART 2014-30 scenario, median ICERs for PopART delivered annually until 2030 were $2111 (95% credible interval [CrI] 1827-2462) per HIV infection averted in Zambia and $3248 (2472-3963) per HIV infection averted in South Africa; and $593 (95% CrI 526-674) per DALY averted in Zambia and $645 (538-757) per DALY averted in South Africa. In the PopART 2014-17 scenario, PopART averted one infection at a cost of $1318 (1098-1591) in Zambia and $2236 (1601-2916) in South Africa, and averted one DALY at $258 (225-298) in Zambia and $326 (266-391) in South Africa, when outcomes were projected until 2030. The intervention had almost 100% probability of being cost-effective at thresholds greater than $700 per DALY averted in Zambia, and greater than $800 per DALY averted in South Africa, in the PopART 2014-30 scenario. Incremental programme costs for annual rounds until 2030 were $46·12 million (for a mean of 341 323 people) in Zambia and $30·24 million (for a mean of 165 852 people) in South Africa. INTERPRETATION: Combination prevention with universal home-based testing can be delivered at low annual cost per person but accumulates to a considerable amount when scaled for a growing population. Combination prevention including UTT is cost-effective at thresholds greater than $800 per DALY averted and can be an efficient strategy to reduce HIV incidence in high-prevalence settings. FUNDING: US National Institutes of Health, President's Emergency Plan for AIDS Relief, International Initiative for Impact Evaluation, Bill & Melinda Gates Foundation.


Assuntos
Antirretrovirais/economia , Antirretrovirais/uso terapêutico , Análise Custo-Benefício/métodos , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , Teste de HIV/economia , Teste de HIV/métodos , Adolescente , Adulto , Análise Custo-Benefício/economia , Análise Custo-Benefício/estatística & dados numéricos , Feminino , Infecções por HIV/economia , Humanos , Masculino , África do Sul , Adulto Jovem , Zâmbia
20.
NPJ Digit Med ; 4(1): 49, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712693

RESUMO

Contact tracing is increasingly used to combat COVID-19, and digital implementations are now being deployed, many based on Apple and Google's Exposure Notification System. These systems utilize non-traditional smartphone-based technology, presenting challenges in understanding possible outcomes. In this work, we create individual-based models of three Washington state counties to explore how digital exposure notifications combined with other non-pharmaceutical interventions influence COVID-19 disease spread under various adoption, compliance, and mobility scenarios. In a model with 15% participation, we found that exposure notification could reduce infections and deaths by approximately 8% and 6% and could effectively complement traditional contact tracing. We believe this can provide health authorities in Washington state and beyond with guidance on how exposure notification can complement traditional interventions to suppress the spread of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...