Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 934: 173131, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38734094

RESUMO

Pesticides are a major source of pollution for ecosystems. In agricultural catchments, ponds serve as buffer areas for pesticide transfers and biogeochemical hotspots for pesticide dissipation. Some studies have highlighted the specific impact of ponds on the dynamics of pesticides, but knowledge of their cumulative effect at the watershed scale is scarce. Hence, using a modelling approach, we assessed the cumulative role of ponds in pesticide transfer in an agricultural basin (Southwest of France, 1110 km2). The Soil and Water Assessment Tool (SWAT) model was used to model the Save basin, including 197 ponds selected with a Multi-Criteria Decision Aiding Model based on their pesticide interception capacities. The daily discharge, the suspended sediment loads and two herbicide loads (i.e. S-metolachlor and aclonifen) in dissolved and particulate phases were accurately simulated from January 2002 to July 2014 at a daily time step. The presence of ponds resulted in a yearly mean reduction at the watershed outlet of respectively 61 % and 42 % of aclonifen and S-metolachlor fluxes compared to the simulations in the absence of ponds. Sediment-related processes were the most efficient for pesticide dissipation, leading to a mean dissipation efficiency by ponds of 51.0 % for aclonifen and 34.4 % for S-metolachlor. This study provides a first quantification of the cumulative role of ponds in pesticide transfer at the catchment scale in an intensive agricultural catchment.

2.
J Environ Manage ; 320: 115911, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961144

RESUMO

In agricultural headwater catchments, wetlands such as ponds are numerous and well known to partly dissipate contamination. Most of the pesticides are transferred from soils to the aquatic environment during flood events. This study reports the annual/seasonal behaviour of 6 pesticides (metolachlor, boscalid, epoxiconazole, tebuconazole, aclonifen and pendimethalin) in such an environment. Because it is rarely considered, the study focussed on the high frequency of the distribution of pesticides between dissolved and particulate phases, as well as the main controlling factors of their upstream-downstream transfer. The pond removal rate was calculated to evaluate the wetland efficiency in pesticide mitigation. We conducted a one-year high frequency hydrochemical survey, with particular emphasis on flood events, in the upper Auradé catchment (SW-France), an area of long-term conventional agriculture on highly erosive carbonated soils. The inlet and outlet of the pond were instrumented for water level measurements and water sampling. The highest concentrations were observed for tebuconazole and, in general, the presence of the molecules during the year depended on the season. The pond showed satisfactory efficiency in pesticide attenuation for the six molecules considered, although the removal rate depended on the molecule and the bearing phase (from 28.4% for boscalid to 89.4% for aclonifen in the dissolved phase and from 22.1% for pendimethalin to 96.8% for metolachlor in the particulate fraction). Interestingly, the more hydrophilic the molecule (low LogKOW), the more efficient the pesticide removal rate was for its particulate fraction, and the opposite for hydrophobic molecules (high LogKOW). Flood events carried a large amount of Total Suspended Solid (TSS) bearing hydrophobic molecules from a major legacy of upper catchment soils, although 52% of the pesticides were transported by the dissolved fraction. Significant resuspension of TSS from the pond was evidenced by the annual mass balance with four tons of TSS released, while the positive rate of pesticide removal involved other effective mechanisms such as exchange and complexation. Although these constructed wetlands may be beneficial for pesticide mitigation, the results highlighted the need for improved land management in the upstream catchment during the different seasons to avoid bare soils that pose a risk of high surface water contamination, especially due to the presence of hydrophobic molecules in combination with a high erosive context.


Assuntos
Praguicidas , Poluentes Químicos da Água , Agricultura , Monitoramento Ambiental , Praguicidas/química , Lagoas , Solo/química , Água , Poluentes Químicos da Água/química
3.
Sci Total Environ ; 842: 156735, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35738369

RESUMO

Pesticides lead to surface water pollution and ecotoxicological effects on aquatic biota. Novel strategies are required to evaluate the contribution of degradation to the overall pesticide dissipation in surface waters. Here, we combined polar organic chemical integrative samplers (POCIS) with compound-specific isotope analysis (CSIA) to trace in situ pesticide degradation in artificial ponds and agricultural streams. The application of pesticide CSIA to surface waters is currently restricted due to environmental concentrations in the low µg.L-1 range, requiring processing of large water volumes. A series of laboratory experiments showed that POCIS enables preconcentration and accurate recording of the carbon isotope signatures (δ13C) of common pesticides under simulated surface water conditions and for various scenarios. Commercial and in-house POCIS did not significantly (Δδ13C < 1 %) change the δ13C of pesticides during uptake, extraction, and δ13C measurements of pesticides, independently of the pesticide concentrations (1-10 µg.L-1) or the flow speeds (6 or 14 cm.s-1). However, simulated rainfall events of pesticide runoff affected the δ13C of pesticides in POCIS. In-house POCIS coupled with CSIA of pesticides were also tested under different field conditions, including three flow-through and off-stream ponds and one stream receiving pesticides from agricultural catchments. The POCIS-CSIA method enabled to determine whether degradation of S-metolachlor and dimethomorph mainly occurred in agricultural soil or surface waters. Comparison of δ13C of S-metolachlor in POCIS deployed in a stream with δ13C of S-metolachlor in commercial formulations suggested runoff of fresh S-metolachlor in the midstream sampling site, which was not recorded in grab samples. Altogether, our study highlights that the POCIS-CSIA approach represents a unique opportunity to evaluate the contribution of degradation to the overall dissipation of pesticides in surface waters.


Assuntos
Praguicidas , Poluentes Químicos da Água , Isótopos de Carbono/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos/análise , Praguicidas/análise , Água/análise , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 431: 128613, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35359102

RESUMO

Agricultural soils are exposed to multiple contaminants through the use of agrochemicals or sewage sludge, introducing metals, nanomaterials and others. Among nanomaterials, carbon nanotubes (CNTs) are known for their large surface area and adsorption capabilities, possibly modifying other element behavior. However, to date, very little is known about the impacts of such interactions in agrosystems. In this study, we aimed at understanding the transfer and toxicity of contaminants (Cd, Pb, Zn and CNTs) in microcosms including native soil bacteria, earthworms and lettuce. After a 6 week exposure, no effect of the addition of CNTs to metal contaminated soils was detected on bacterial concentration or earthworm growth. However, in lettuce, an interactive effect between CNTs and metals was highlighted: in the soil containing the highest metal concentrations the addition of 0.1 mg kg-1 CNTs led to a biomass loss (-22%) and a flavonoid concentration increase (+27%). In parallel, the addition of CNTs led to differential impacts on elemental uptake in lettuce leaves possibly related to the soil organic matter content. For earthworms, the addition of 10 mg kg-1 CNTs resulted in an increased body elemental transfer in the soil with the higher organic matter content (Pb: + 34% and Zn: + 25%).


Assuntos
Nanotubos de Carbono , Oligoquetos , Poluentes do Solo , Animais , Metais/toxicidade , Nanotubos de Carbono/toxicidade , Solo/química , Poluentes do Solo/análise
5.
Appl Opt ; 57(29): 8775-8779, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30461956

RESUMO

Iridium-based coatings for mirrors of x-ray telescopes are studied. In particular, stress-induced deformation is characterized and shown to be compressive and equal to -1786 MPa. Two methods for stress compensation are then studied. One relies on the deposition of silica on the back surface of the substrate and a second one relies on the deposition of a chromium sublayer. Advantages and drawbacks of each of these techniques are presented.

6.
Sci Total Environ ; 618: 1284-1297, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29132718

RESUMO

The development of efficient bioremediation techniques to reduce aquatic pollutant load in natural sediment is one of the current challenges in ecological engineering. A nature-based solution for metal bioremediation is proposed through a combination of bioturbation and phytoremediation processes in experimental indoor microcosms. The invertebrates Tubifex tubifex (Oligochaeta Tubificidae) was used as an active ecological engineer for bioturbation enhancement. The riparian plant species Typha latifolia was selected for its efficiency in phyto-accumulating pollutants from sediment. Phytoremediation efficiency was estimated by using cadmium as a conservative pollutant known to bio-accumulate in plants, and initially introduced in the overlying water (20µg Cd/L of cadmium nitrate - Cd(NO3)2·4H2O). Biological sediment reworking by invertebrates' activity was quantified using luminophores (inert particulates). Our results showed that bioturbation caused by tubificid worms' activity followed the bio-conveying transport model with a downward vertical velocity (V) of luminophores ranging from 16.7±4.5 to 18.5±3.9cm·year-1. The biotransport changed the granulometric properties of the surface sediments, and this natural process was still efficient under cadmium contamination. The highest value of Cd enrichment coefficient for plant roots was observed in subsurface sediment layer (below 1cm to 5cm depth) with tubificids addition. We demonstrated that biotransport changed the distribution of cadmium across the sediment column as well as it enhanced the pumping of this metal from the surface to the anoxic sediment layers, thereby increasing the bioaccumulation of cadmium in the root system of Typha latifolia. This therefore highlights the potential of bioturbation as a tool to be considered in future as integrated bioremediation strategies of metallic polluted sediment in aquatic ecosystems.


Assuntos
Cádmio/análise , Oligoquetos/fisiologia , Typhaceae/química , Poluentes Químicos da Água/análise , Áreas Alagadas , Animais , Ecossistema , Sedimentos Geológicos
7.
Environ Pollut ; 213: 1016-1027, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26809502

RESUMO

A dynamic coupled biogeochemical-ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities. The calibration of the environmental niches was successful, with a model performance consistently reasonably high throughout the three sites. The model simulations of two climatic and two deposition scenarios showed that climate change may entirely compromise the eventual recovery from eutrophication of the simulated plant communities in response to the reductions in nitrogen deposition. The interplay between climate and deposition was strongly governed by site characteristics and histories in the long term, while forest management remained the main driver of change in the short term.


Assuntos
Poluentes Atmosféricos/farmacologia , Biodiversidade , Mudança Climática , Florestas , Nitrogênio/farmacologia , Solo , Árvores/efeitos dos fármacos , Abies/efeitos dos fármacos , Abies/crescimento & desenvolvimento , Atmosfera/química , Clima , Conservação dos Recursos Naturais , França , Modelos Biológicos , Picea/efeitos dos fármacos , Picea/crescimento & desenvolvimento , Quercus/efeitos dos fármacos , Quercus/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento
8.
Sci Total Environ ; 514: 10-25, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25647464

RESUMO

The purpose of this study was to assess the influence of anthropogenic factors (infrastructure construction and industrial and wastewater inputs) and hydrological factors (high-magnitude flood events) on metal and organic contamination and on the source variability of sediments taken from the Deba River and its tributaries. The pollution status was evaluated using a sequential extraction procedure (BCR 701), enrichment factor, individual and global contamination factors and a number of statistical analysis methods. Zn, Cu and Cr were found to have significant input from anthropogenic sources, with moderately severe enrichment, together with an extremely high potential risk of contamination. The principal scavenger of Cu and Cr was organic matter, whereas Zn was uniformly distributed among all non-residual fractions. For Fe, the anthropogenic contribution was more obviously detected in bulk sediments (<2 mm) than in fine fractions (<63 µm). Finally, the recent construction of a rail tunnel traversing Wealden Facies evaporites, together with intense rainfalls, was the main reason for the change in the source variability of bottom sediments and metal distribution in headwaters. The occurrence of a high-magnitude flood event resulted in a washout of the river bed and led to a general decrease in fine-grained sediment and metal concentrations in labile fractions of channel-bottom sediments, and a consequent downstream transfer of the pollution.


Assuntos
Monitoramento Ambiental , Inundações , Sedimentos Geológicos/química , Metais/análise , Poluentes Químicos da Água/análise , Rios/química , Espanha
9.
Int J Phytoremediation ; 14(5): 493-505, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22567727

RESUMO

The long length of periods required for effective soil remediation via phytoextraction constitutes a weak point that reduces its industrial use. However, these calculated periods are mainly based on short-term and/or hydroponic controlled experiments. Moreover, only a few studies concern more than one metal, although soils are scarcely polluted by only one element. In this scientific context, the phytoextraction of metals and metalloids (Pb, Cd, Zn, Cu, and As) by Pelargonium was measured after a long-term field experiment. Both bulk and rhizosphere soils were analyzed in order to determine the mechanisms involved in soil-root transfer. First, a strong increase in lead phytoextraction was observed with plant maturity, significantly reducing the length of the period required for remediation. Rhizosphere Pb, Zn, Cu, Cd, and As accumulation was observed (compared to bulk soil), indicating metal mobilization by the plant, perhaps in relation to root activity. Moreover, metal phytoextraction and translocation were found to be a function of the metals' nature. These results, taken altogether, suggest that Pelargonium could be used as a multi-metal hyperaccumulator under multi-metal soil contamination conditions, and they also provide an interesting insight for improving field phytoextraction remediation in terms of the length of time required, promoting this biological technique.


Assuntos
Arsênio/metabolismo , Metais Pesados/metabolismo , Pelargonium/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Transporte Biológico , Biomassa , Cloreto de Cálcio/metabolismo , Metais Pesados/análise , Pelargonium/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Rizosfera , Solo/química , Fatores de Tempo
10.
Environ Int ; 31(6): 891-5, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16023207

RESUMO

Complex toxic effects of Cd2+, Zn2+, and acid rain on growth of kidney bean (Phaseolus vulgaris L) were studied in a pot experiment by measurement of fresh weights of the plants, determination of surperoxide dismutase (SOD), peroxidase (POD), and lipid peroxidation (MDA) in the plant organs, and observation of injury symptoms. The experimental results demonstrated that all treatments of Cd2+, Zn2+, and/or acid rain significantly decreased fresh weights of kidney bean and caused toxic effects on growth of the plants, especially higher amounts of Cd2+ and Zn2+ and higher acidity of acid rain. Combination of these three pollutant factors resulted in more serious toxic effects than any single pollutant and than combinations of any two pollutants. SOD, POD, and MDA in the plant organs changed with different pollution levels, but MDA content in the leaves showed the best relationship between the pollution levels and toxic effects.


Assuntos
Chuva Ácida/toxicidade , Cádmio/toxicidade , Phaseolus/efeitos dos fármacos , Zinco/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Peroxidase/metabolismo , Phaseolus/enzimologia , Phaseolus/crescimento & desenvolvimento , Folhas de Planta/enzimologia , Raízes de Plantas/enzimologia , Caules de Planta/enzimologia , Superóxido Dismutase/metabolismo
11.
Sci Total Environ ; 339(1-3): 153-66, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15740766

RESUMO

In 1985, the collapse of the tailing dam in Chenzhou lead/zinc mine (Hunan, southern China) led to the spread of mining waste spills on the farmland along the Dong River. After the accident, an urgent soil cleaning up was carried out in some places. Seventeen years later, cereal (rice, maize, and sorghum), pulses (soybean, Adzuki bean, mung bean and peanut), vegetables (ipomoea, capsicum, taro and string bean) and the rooted soils were sampled at four sites: (1) the mining area (SZY), (2) the area still covered with the mining tailing spills (GYB), (3) the cleaned area from mining tailing spills (JTC), and (4) a background site (REF). Metal concentrations in the crops and soils were analyzed to evaluate the long-term effects of the spilled waste on the soil and the potential human exposure through food chains. The results showed that the physical-chemical properties of the soils obviously changed due to the different farming styles used by each individual farmer. Leaching effects and plant extraction of metals from some soils were quite weak. Certain soils were still heavily polluted with As, Cd, Zn, Pb and Cu. The contamination levels were in the order of GYB>SZY>JTC showing that the clean-up treatment was effective. The maximum allowable concentration (MAC) levels for Chinese agricultural soils were still highly exceeded, particularly for As and Cd (followed by Zn, Pb and Cu), with mean concentrations of 709 and 7.6 mg kg(-1), respectively. These concentrations exceed the MAC levels by 24 times for As and 13 times for Cd at GYB. Generally, the edible leaves or stems of crops were more heavily contaminated than seeds or fruits. Ipomoea was the most severely contaminated crop. The concentrations of Cd and Pb were 3.30 and 76.9 mg kg(-1) in ipomoea leaves at GYB, which exceeded the maximum permit levels (0.5 mg kg(-1) for Cd and 9 mg kg(-1) for Pb) by 6.6 and 8.5 times, respectively. Taro (+skin) could accumulate high concentrations of Zn and Cd in the edible stem, and rice and capsicum had high Cd concentration in the edible parts. However, the toxic element concentrations in maize, sorghum, Adzuki bean, soybean and mung bean remained lower than the threshold levels. The bio-accumulation factors (BAFs) of crops were in the order: Cd>Zn>Cu>Pb>As. BAF was typically lower in the edible seeds or fruits than in stems and leaves. The accumulation effect strongly depends on the crop's physiological properties, the mobility, of the metals, and the availability of metals in soils but not entirely on the total element concentrations in the soils. Even so, the estimated daily intake amount of Cu, Zn, Cd, and Pb from the crops grown in the affected three sites and arsenic at SZY and GYB exceeded the RDA (Recommended dietary allowance) levels. Subsequently, the crops grown in Chenzhou Pb/Zn mine waste affected area might have a hazardous effect on the consumer's health. This area still needs effective measures to cure the As, Cd, Pb, Zn and Cu contamination.


Assuntos
Produtos Agrícolas/efeitos dos fármacos , Metais Pesados/toxicidade , Poluentes do Solo/toxicidade , Acidentes de Trabalho , Arsênio/análise , Arsênio/metabolismo , Produtos Agrícolas/metabolismo , Monitoramento Ambiental , Cadeia Alimentar , Chumbo/análise , Chumbo/metabolismo , Chumbo/toxicidade , Metais Pesados/análise , Metais Pesados/metabolismo , Mineração , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Zinco/análise , Zinco/metabolismo , Zinco/toxicidade
12.
Sci Total Environ ; 312(1-3): 195-219, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12873411

RESUMO

This study is one of very few dealing with the distribution and the origin of heavy metals in French soils from a priori non-polluted forest areas. The abundance of heavy metals measured in these soils decreases as follows: Cr>Zn>Pb>Ni>Cu>Co>>Cd. Total concentrations of Pb, Cr and Ni in some soils exceed the European thresholds for non-polluted soils and even the French association of normalization critical values for sludge spreading. The lowest heavy metal contents are observed in acid soils while the highest concentrations are in the calcaric cambisol and in the mollic andosol, which is rather scarce as compared with the other French forest soils. With the exception of the podzol, Cr and Ni concentrations increase with depth in all soil profiles. The distribution pattern of Co, Cu, Zn depends on the soil characteristics. In some acid soils, however, Cu and Zn decrease with depth. Pb and Cd are accumulated in the upper soil horizons. Heavy metals accumulate in deep soil horizons in relation to important clay content in the dystric planosol and stagnic luvisol. The concentration of each heavy metal is always controlled by different parameters (soil pH, iron and aluminum oxide content, clay content, organic matter and cation exchange capacity), which are heavy metal specific. This study highlights the metal-trapping character of andosol and calcaric soil, the weak heavy metal retention in acid soils, the leaching and trapping character in leached clayed soils, and the migration of heavy metals in the podzol. Pb and Cr concentrations indicate a significant enrichment in surface horizons from various soils in areas which receive significant acid atmospheric pollution. Particularly, the highest Pb content is observed in a soil located in the N-NE part of France. Lead isotope ratios measured in the cambic podzol and the calcaric cambisol, exhibit the importance of the anthropogenic sources and particularly the influence of global atmospheric inputs from leaded gasoline compared to regional and local industrial emissions. The anthropogenic Pb contribution is estimated to 83, 30 and 11%, respectively, for surface, intermediate and deep horizons of the cambic podzol located in the northern part of France, and to 68% in surface horizon of the calcaric cambisol located in the Alps.


Assuntos
Poluentes Atmosféricos/análise , Metais Pesados/análise , Poluentes do Solo/análise , Árvores , Monitoramento Ambiental , França , Indústrias , Emissões de Veículos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...