Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(8): e202115802, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34918870

RESUMO

Genome mining and bioactivity studies suggested the sponge-derived bacterium Aquimarina sp. Aq135 as a producer of new antibiotics. Activity-guided isolation identified antibacterial peptides, named aquimarins, featuring a new scaffold with an unusual C-terminal amino group and chlorine moieties. Responsible for the halogenation is the FeII /α-ketoglutarate-dependent chlorinase AqmA that halogenates up to two isoleucine residues in a carrier protein-dependent fashion. Total syntheses of two natural aquimarins and eight non-natural variants were developed. Structure-activity relationship (SAR) studies with these compounds showed that the synthetically more laborious chlorinations are not required for antibacterial activity but enhance cytotoxicity. In contrast, variants lacking the C-terminal amine were virtually inactive, suggesting diamines similar to the terminal aquimarin residue as candidate building blocks for new peptidomimetic antibiotics.


Assuntos
Antibacterianos/química , Flavobacteriaceae/química , Peptídeos/química , Antibacterianos/metabolismo , Conformação Molecular , Peptídeos/genética , Peptídeos/metabolismo , Estereoisomerismo
2.
Angew Chem Int Ed Engl ; 60(16): 8781-8785, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33460275

RESUMO

Indolyloxazole alkaloids occur in diverse micro- and macroorganisms and exhibit a wide range of pharmacological activities. Despite their ubiquitous occurrence and simple structures, the biosynthetic pathway remained unknown. Here, we used transposon mutagenesis in the labradorin producer Pseudomonas entomophila to identify a cryptic biosynthetic locus encoding an N-acyltransferase and a non-heme diiron desaturase-like enzyme. Heterologous expression in E. coli demonstrates that both enzymes are sufficient to produce indolyloxazoles. Probing their function in stable-isotope feeding experiments, we provide evidence for an unusual desaturase mechanism that generates the oxazole by decarboxylative cyclization.


Assuntos
Adenilil Ciclases/metabolismo , Alcaloides/metabolismo , Oxigenases de Função Mista/metabolismo , Oxazóis/metabolismo , Pseudomonas/química , Alcaloides/química , Biocatálise , Estrutura Molecular , Oxazóis/química , Pseudomonas/metabolismo
4.
Nat Microbiol ; 3(8): 909-919, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30038309

RESUMO

Plants are colonized by phylogenetically diverse microorganisms that affect plant growth and health. Representative genome-sequenced culture collections of bacterial isolates from model plants, including Arabidopsis thaliana, have recently been established. These resources provide opportunities for systematic interaction screens combined with genome mining to discover uncharacterized natural products. Here, we report on the biosynthetic potential of 224 strains isolated from the A. thaliana phyllosphere. Genome mining identified more than 1,000 predicted natural product biosynthetic gene clusters (BGCs), hundreds of which are unknown compared to the MIBiG database of characterized BGCs. For functional validation, we used a high-throughput screening approach to monitor over 50,000 binary strain combinations. We observed 725 inhibitory interactions, with 26 strains contributing to the majority of these. A combination of imaging mass spectrometry and bioactivity-guided fractionation of the most potent inhibitor, the BGC-rich Brevibacillus sp. Leaf182, revealed three distinct natural product scaffolds that contribute to the observed antibiotic activity. Moreover, a genome mining-based strategy led to the isolation of a trans-acyltransferase polyketide synthase-derived antibiotic, macrobrevin, which displays an unprecedented natural product structure. Our findings demonstrate that the phyllosphere is a valuable environment for the identification of antibiotics and natural products with unusual scaffolds.


Assuntos
Arabidopsis/microbiologia , Bactérias/classificação , Produtos Biológicos/metabolismo , Vias Biossintéticas , Antibacterianos/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Mineração de Dados , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Família Multigênica , Filogenia , Folhas de Planta/microbiologia , Análise de Sequência de DNA/métodos
5.
Angew Chem Int Ed Engl ; 57(44): 14519-14523, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30025185

RESUMO

The large number of sequenced bacterial genomes provides the opportunity to bioinformatically identify rich natural product sources among previously neglected microbial groups. Testing this discovery strategy, unusually high biosynthetic potential was suggested for the Oceanospirillales member Gynuella sunshinyii, a Gram-negative marine bacterium from the rhizosphere of the halophilic plant Carex scabrifolia. Its genome contains numerous unusual biosynthetic gene clusters for diverse types of metabolites. Genome-guided isolation yielded representatives of four different natural product classes, of which only alteramide A was known. Cytotoxic lacunalides were identified as products of a giant trans-acyltransferase polyketide synthase gene cluster, one of six present in this strain. Cytological profiling against HeLa cells suggested that lacunalide A disrupts CDK signaling in the cell cycle. In addition, chemical studies on model compounds were conducted, suggesting the structurally unusual ergoynes as products of a conjugated diyne-thiourea cyclization reaction.


Assuntos
Produtos Biológicos/química , Genoma , Plantas/microbiologia , Água do Mar/microbiologia , Espectroscopia de Prótons por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...