Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 10(13): e15350, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35785527

RESUMO

Traumatic brain injury (TBI) has been associated with the development of indirect acute respiratory distress syndrome (ARDS). However, the causative relationship between TBI and lung injury remains unclear. To explore potential mechanisms linking TBI with the development of ARDS, we characterized the effects of serum factors released following TBI and hemorrhagic shock (HS) in a rat model on the pulmonary endothelial cell (EC) barrier dysfunction, a key feature of ARDS. We found that serum samples from animals exposed to both controlled cortical impact (CCI) and HS, but not from sham-operated rats induced significant barrier dysfunction in human pulmonary artery EC monolayers at 2 days post injury. Thrombin inhibitor and thrombin receptor antagonist attenuated the acute phase of the serum-induced trans-endothelial resistance (TER) decline caused by CCI-HS serum, but not in later time points. However, both the early and late phases of CCI-HS-induced EC permeability were inhibited by heparin. The barrier disruptive effects of CCI-HS serum were also prevented by serum preincubation with heparin-sepharose. Pulmonary EC treated for 3 h with serum from CCI-HS rats demonstrated a significant decline in expression of EC junctional protein, VE-Cadherin, and disassembly of peripheral EC adherens junction complexes monitored by immunostaining with VE-cadherin antibody. These results suggest that exposure to CCI-HS causes early and late-phase barrier disruptive effects in vascular endothelium. While thrombin-PAR1 signaling has been identified as a mechanism of acute EC permeability increase by CCI-HS serum, the factor(s) defining long-term EC barrier disruption in CCI-HS model remains to be determined.


Assuntos
Lesões Encefálicas Traumáticas , Síndrome do Desconforto Respiratório , Choque Hemorrágico , Doenças Vasculares , Animais , Lesões Encefálicas Traumáticas/complicações , Ratos , Choque Hemorrágico/complicações , Trombina
2.
J Neurotrauma ; 39(19-20): 1442-1452, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35481784

RESUMO

Aeromedical evacuation-relevant hypobaria after traumatic brain injury (TBI) leads to increased neurological injury and death in rats relative to those maintained under normobaria. Applicability of rodent brain injury research to humans may be limited, however, by differences in neuroanatomy. Therefore, we developed a model in which ferrets are exposed to polytrauma consisting of controlled cortical impact TBI and hemorrhagic shock subjected 24 h later to 6 h of hypobaria or normobaria. Our objective was to determine whether the deleterious effects of hypobaria observed in rats, with lissencephalic brains, are also present in a species with a human-like gyrencephalic brain. While no deaths were observed, magnetic resonance spectroscopy (MRS) results obtained two days post-injury indicated reduced cortical creatine, N-acetylaspartate, gamma-aminobutyric acid, myo-inositol, and glutamate that were not affected by hypobaria. T2-weighted magnetic resonance imaging quantification revealed increased hyperintensity volume representing cortical edema at the site of impact after polytrauma. Hypobaria did not exacerbate this focal edema but did lead to overall reductions in total cortical volume. Both normobaric and hypobaric ferrets exhibited impaired spatial memory six days post-injury on the Object Location Test, but no differences were noted between groups. Finally, cortical lesion volume was not exacerbated by hypobaria exposure on day 7 post-injury. Results suggest that air travel 24 h after polytrauma is associated with structural changes in the ferret brain. Future studies should investigate secondary injury from hypobaria after polytrauma in greater detail including alternative outcome measures, time points, and exposure to multiple flights.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismo Múltiplo , Choque Hemorrágico , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Creatina , Furões , Glutamatos , Humanos , Inositol , Ratos , Choque Hemorrágico/complicações , Ácido gama-Aminobutírico
3.
Metabolites ; 11(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073714

RESUMO

Hyperpolarized magnetic resonance spectroscopic imaging (MRSI) of [1-13C]pyruvate metabolism has previously been used to assess the effects of traumatic brain injury (TBI) in rats. Here, we show that MRSI can be used in conjunction with dichloroacetate to measure the phosphorylation state of pyruvate dehydrogenase (PDH) following mild-to-moderate TBI, and that measurements can be repeated in a longitudinal study to monitor the course of injury progression and recovery. We found that the level of 13C-bicarbonate and the bicarbonate-to-lactate ratio decreased on the injured side of the brain four hours after injury and continued to decrease through day 7. Levels recovered to normal by day 28. Measurements following dichloroacetate administration showed that PDH was inhibited equally by PDH kinase (PDK) on both sides of the brain. Therefore, the decrease in aerobic metabolism is not due to inhibition by PDK.

4.
Shock ; 56(5): 793-802, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33625116

RESUMO

ABSTRACT: Rats exposed to hypobaria equivalent to what occurs during aeromedical evacuation within a few days after isolated traumatic brain injury exhibit greater neurologic injury than those remaining at sea level. Moreover, administration of excessive supplemental O2 during hypobaria further exacerbates brain injury. This study tested the hypothesis that exposure of rats to hypobaria following controlled cortical impact (CCI)-induced brain injury plus mild hemorrhagic shock worsens multiple organ inflammation and associated mortality. In this study, at 24 h after CCI plus hemorrhagic shock, rats were exposed to either normobaria (sea level) or hypobaria (=8,000 ft altitude) for 6 h under normoxic or hyperoxic conditions. Injured rats exhibited mortality ranging from 30% for those maintained under normobaria and normoxia to 60% for those exposed to 6 h under hypobaric and hyperoxia. Lung histopathology and neutrophil infiltration at 2 days postinjury were exacerbated by hypobaria and hyperoxia. Gut and kidney inflammation at 30 days postinjury were also worsened by hypobaric hyperoxia. In conclusion, exposure of rats after brain injury and hemorrhagic shock to hypobaria or hyperoxia results in increased mortality. Based on gut, lung, and kidney histopathology at 2 to 30 days postinjury, increased mortality is consistent with multi-organ inflammation. These findings support epidemiological studies indicating that increasing aircraft cabin pressures to 4,000 ft altitude (compared with standard 8,000 ft) and limiting excessive oxygen administration will decrease critical complications during and following aeromedical transport.


Assuntos
Pressão do Ar , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/mortalidade , Trato Gastrointestinal/lesões , Rim/lesões , Lesão Pulmonar/complicações , Lesão Pulmonar/mortalidade , Choque Hemorrágico/complicações , Choque Hemorrágico/mortalidade , Resgate Aéreo , Altitude , Animais , Masculino , Ratos , Ratos Sprague-Dawley
5.
Exp Neurol ; 328: 113247, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32061629

RESUMO

Mitochondria are both a primary source of reactive oxygen species (ROS) and a sensitive target of oxidative stress; damage to mitochondria can result in bioenergetic dysfunction and both necrotic and apoptotic cell death. These relationships between mitochondria and cell death are particularly strong in both acute and chronic neurodegenerative disorders. ROS levels are affected by both the production of superoxide and its toxic metabolites and by antioxidant defense mechanisms. Mitochondrial antioxidant activities include superoxide dismutase 2, glutathione peroxidase and reductase, and intramitochondrial glutathione. When intracellular conditions disrupt the homeostatic balance between ROS production and detoxification, a net increase in ROS and an oxidized shift in cellular redox state ensues. Cells respond to this imbalance by increasing the expression of genes that code for proteins that protect against oxidative stress and inhibit cytotoxic oxidation of proteins, DNA, and lipids. If, however, the genomic response to mitochondrial oxidative stress is insufficient to maintain homeostasis, mitochondrial bioenergetic dysfunction and release of pro-apoptotic mitochondrial proteins into the cytosol initiate a variety of cell death pathways, ultimately resulting in potentially lethal damage to vital organs, including the brain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a translational activating protein that enters the nucleus in response to oxidative stress, resulting in increased expression of numerous cytoprotective genes, including genes coding for mitochondrial and non-mitochondrial antioxidant proteins. Many experimental and some FDA-approved drugs promote this process. Since mitochondria are targets of ROS, it follows that protection against mitochondrial oxidative stress by the Nrf2 pathway of gene expression contributes to neuroprotection by these drugs. This document reviews the evidence that Nrf2 activation increases mitochondrial antioxidants, thereby protecting mitochondria from dysfunction and protecting neural cells from damage and death. New experimental results are provided demonstrating that post-ischemic administration of the Nrf2 activator sulforaphane protects against hippocampal neuronal death and neurologic injury in a clinically-relevant animal model of cardiac arrest and resuscitation.


Assuntos
Antioxidantes/fisiologia , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Degeneração Neural/metabolismo , Ativação Transcricional/fisiologia , Animais , Morte Celular/fisiologia , Humanos , Mitocôndrias/patologia , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/fisiologia
6.
Resuscitation ; 140: 23-28, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31063840

RESUMO

BACKGROUND: Animal studies indicate that maintaining physiologic O2 levels (normoxia) immediately after restoration of spontaneous circulation (ROSC) from cardiac arrest (CA) results in less hippocampal neuronal death compared to animals ventilated with 100% O2. This study tested the hypothesis that beneficial effects of avoiding hyperoxia following CA are apparent in the cerebellum and therefore not limited to one brain region. METHODS: Adult beagles were anesthetized and mechanically ventilated. Ventricular fibrillation CA was induced by electrical myocardial stimulation and cessation of ventilation. Ten min later, dogs were ventilated with 100% O2 and resuscitated using 3 min of open chest CPR followed by defibrillation. Dogs were ventilated for 1 h with either 100% O2 or with O2 titrated rapidly to maintain hemoglobin O2 saturation at 94-96%. FiO2 was adjusted in both groups between one and 24 h post-arrest to maintain normoxic PaO2 of 80-120 mm Hg. Following 24 h critical care, dogs were euthanized and cerebellum analyzed for histochemical measures of neuronal damage and inflammation. RESULTS AND CONCLUSIONS: Hyperoxic resuscitation increased the number of injured Purkinje cells by 278% and the number of activated microglia/macrophages by 18% compared to normoxic resuscitation. These results indicate that normoxic resuscitation promotes favorable histopathologic outcomes in the cerebellum (in addition to hippocampus) following CA/ROSC. These findings emphasize the importance of avoiding unnecessary hyperoxia following CA/ROSC.


Assuntos
Reanimação Cardiopulmonar/métodos , Parada Cardíaca/terapia , Hipóxia/prevenção & controle , Oxigênio/sangue , Animais , Modelos Animais de Doenças , Cães , Feminino , Oximetria , Células de Purkinje/patologia
7.
J Trauma Acute Care Surg ; 85(1S Suppl 2): S68-S76, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29953420

RESUMO

BACKGROUND: Injured warfighters air evacuated to tertiary medical care facilities are subjected to many stresses that may promote the development of sepsis. In this study, we tested the hypothesis that exposure to "in-flight" hypobaria and/or hyperoxia within 24 hours after onset of intra-abdominal infection in rats accelerates the development and/or severity of sepsis and neurologic injury in survivors. METHODS: Sprague-Dawley rats underwent cecal ligation/puncture (CLP) or sham procedures. Twenty-four hours later, rats were then placed in hypobaric chambers for 6 hours and assigned to normobaric conditions and maintained at either 21% or 100% O2, or under hypobaric conditions (pressure equivalent to an altitude of 8,000 ft) but maintained under either 28% or 100% O2. Two days after CLP or sham, blood samples were obtained for cytokine levels, and mitochondria were isolated from the brain and heart of a subset of animals for analysis of mitochondrial oxygen consumption. Animals were also evaluated for neuromotor impairment before and 15 days postsurgery. RESULTS: Among the 70 rats studied, 16.7% of CLP but none of the sham-treated rats died. All of the CLP but none of the sham rats had evidence of peritonitis at 2 days. Twenty percent (6 of 30) CLP rats undergoing hypobaria versus 12.5% (3 of 24) of CLP rats exposed to normobaria died (p = 0.715) while 12% (3 of 25) of CLP rats exposed to hyperoxia versus 20.7% (6 of 29) of CLP rats exposed to normoxia died (p = 0.48). The ratio of mitochondrial ATP-generating O2 consumption to resting respiration was higher in the CLP plus hypobaria under 100% compared with shams. The only difference in H2O2 production was observed in mitochondria from CLP rats exposed to hyperoxia under normobaric conditions. Composite neurologic scores obtained 15 days postinjury were lower than those at baseline for shams. CONCLUSION: We conclude that neither "in-flight" hyperoxia nor hypobaria exacerbate sepsis or neurologic injury.


Assuntos
Pressão Atmosférica , Metabolismo Energético , Hiperóxia/complicações , Sepse/complicações , Animais , Encéfalo/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Masculino , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley , Sepse/sangue , Sepse/metabolismo , Sepse/mortalidade
8.
J Trauma Acute Care Surg ; 83(1 Suppl 1): S35-S42, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28452879

RESUMO

BACKGROUND: Occupants of military vehicles targeted by explosive devices often suffer from traumatic brain injury (TBI) and are typically transported by the aeromedical evacuation (AE) system to a military medical center within a few days. This study tested the hypothesis that exposure of rats to AE-relevant hypobaria worsens cerebral axonal injury and neurologic impairment caused by underbody blasts. METHODS: Anesthetized adult male rats were secured within cylinders attached to a metal plate, simulating the hull of an armored vehicle. An explosive located under the plate was detonated, resulting in a peak vertical acceleration force on the plate and occupant rats of 100G. Rats remained under normobaria or were exposed to hypobaria equal to 8,000 feet in an altitude chamber for 6 hours, starting at 6 hours to 6 days after blast. At 7 days, rats were tested for vestibulomotor function using the balance beam walking task and euthanized by perfusion. The brains were then analyzed for axonal fiber injury. RESULTS: The number of internal capsule silver-stained axonal fibers was greater in animals exposed to 100G blast than in shams. Animals exposed to hypobaria starting at 6 hours to 6 days after blast exhibited more silver-stained fibers than those not exposed to hypobaria. Rats exposed to 100% oxygen (O2) during hypobaria at 24 hours postblast displayed greater silver staining and more balance beam foot-faults, in comparison with rats exposed to hypobaria under 21% O2. CONCLUSION: Exposure of rats to blast-induced acceleration of 100G increases cerebral axonal injury, which is significantly exacerbated by exposure to hypobaria as early as 6 hours and as late as 6 days postblast. Rats exposed to underbody blasts and then to hypobaria under 100% O2 exhibit increased axonal damage and impaired motor function compared to those subjected to blast and hypobaria under 21% O2. These findings raise concern about the effects of AE-related hypobaria on TBI victims, the timing of AE after TBI, and whether these effects can be mitigated by supplemental oxygen.


Assuntos
Pressão Atmosférica , Traumatismos por Explosões/patologia , Lesões Encefálicas Traumáticas/patologia , Aceleração , Resgate Aéreo , Altitude , Animais , Axônios/patologia , Modelos Animais de Doenças , Masculino , Medicina Militar , Neurônios/patologia , Ratos
9.
J Neurotrauma ; 34(11): 1972-1980, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28322622

RESUMO

Blast-related traumatic brain injury (bTBI) resulting from improvised explosive devices is the hallmark injury of recent wars, and affects many returning veterans who experienced either direct or indirect exposure. Many of these veterans have long-term neurocognitive symptoms. However, there is very little evidence to show whether blast-induced acceleration alone, in the absence of secondary impacts, can cause mild TBI. In this study, we examine the effect of under-vehicle blast-induced hyperacceleration (uBIH) of ∼1700 g on the biochemical and microstrucutral changes in the brain using diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS). Two groups of adult male Sprague-Dawley (SD) rats were subjected to a sham procedure and uBIH, respectively. Axonal and neurochemical alterations were assessed using in vivo DTI and MRS at 2 h, 24 h, and 7 days after uBIH. Significant reduction in mean diffusivity, axial diffusivity, and radial diffusivity were observed in the hippocampus, thalamus, internal capsule, and corpus callosum as early as 2 h, and sustained up to 7 days post-uBIH. Total creatine (Cr) and glutamine (Gln) were reduced in the internal capsule at 24 h post-uBIH. The reductions in DTI parameters, Cr and Gln in vivo suggest potential activation of astrocytes and diffuse axonal injury following a single underbody blast, confirming previous histology reports.


Assuntos
Aceleração/efeitos adversos , Traumatismos por Explosões/diagnóstico por imagem , Imagem de Tensor de Difusão/tendências , Hipocampo/diagnóstico por imagem , Cápsula Interna/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Animais , Traumatismos por Explosões/metabolismo , Sistema Nervoso Central/diagnóstico por imagem , Sistema Nervoso Central/metabolismo , Imagem de Tensor de Difusão/métodos , Hipocampo/metabolismo , Cápsula Interna/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Masculino , Ratos , Ratos Sprague-Dawley
11.
J Trauma Acute Care Surg ; 79(4 Suppl 2): S101-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26406421

RESUMO

BACKGROUND: Many traumatic brain injury (TBI) patients experience additional injuries, including those that result in hemorrhagic shock (HS). Interactions between HS and TBI can include reduced brain O2 delivery, resulting in partial cerebral ischemia and worse neurologic outcome. This study tested the hypothesis that inspiration of 100% O2 during resuscitation following TBI and HS improves survival, reduces brain lesion volume, and improves neurologic outcome compared with resuscitation in the absence of supplemental O2. METHODS: The adult male rat polytrauma model consisted of controlled cortical impact-induced TBI followed by 30 minutes of HS (mean arterial pressure, 35-40 mm Hg) induced by blood withdrawal. The HS phase was followed by a 1-hour "prehospital" Hextend fluid resuscitation phase and then a 1-hour "hospital phase" when shed blood was reinfused. Rats were randomized on the day of surgery to three groups with 10 per group: sham, polytrauma normoxic, and polytrauma hyperoxic. Normoxic animals inspired room air, and hyperoxic animals inspired 100% O2 during both resuscitation phases. Neurobehavioral tests were conducted weekly until the rats were perfused with fixative at 30 days after injury. Brain sections were stained with Fluoro Jade B and used for quantification of contusion, penumbral, and healthy cortical volumes. RESULTS: Survival was greater following hyperoxic compared with normoxic resuscitation. Composite neuroscores obtained at 2 weeks to 4 weeks following hyperoxic resuscitation were lower than those of shams. Balance beam foot faults measured at 2 weeks after injury were greater following hyperoxic resuscitation compared with normoxic resuscitation and those of shams. There was no significant difference in cerebrocortical pathology between the normoxic and hyperoxic polytrauma groups. CONCLUSION: The survival of rats following controlled cortical impact plus HS was greater following hyperoxic resuscitation. In contrast, neurologic outcomes were better following normoxic resuscitation.


Assuntos
Lesões Encefálicas/terapia , Oxigenoterapia , Ressuscitação/métodos , Choque Hemorrágico/terapia , Animais , Lesões Encefálicas/fisiopatologia , Modelos Animais de Doenças , Masculino , Traumatismo Múltiplo/fisiopatologia , Traumatismo Múltiplo/terapia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Choque Hemorrágico/fisiopatologia , Taxa de Sobrevida
12.
J Trauma Acute Care Surg ; 77(3 Suppl 2): S83-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25159367

RESUMO

BACKGROUND: More than 300,000 US war fighters in Operations Iraqi and Enduring Freedom have sustained some form of traumatic brain injury (TBI), caused primarily by exposure to blasts. Many victims are occupants in vehicles that are targets of improvised explosive devices. These underbody blasts expose the occupants to vertical acceleration that can range from several to more than 1,000 G; however, it is unknown if blast-induced acceleration alone, in the absence of exposure to blast waves and in the absence of secondary impacts, can cause even mild TBI. METHODS: We approached this knowledge gap using rats secured to a metal platform that is accelerated vertically at either 20 G or 50 G in response to detonation of a small explosive (pentaerythritol tetranitrate) located at precise underbody standoff distances. All rats survived the blasts and were perfusion fixed for brain histology at 4 hours to 30 days later. RESULTS: Robust silver staining indicative of axonal injury was apparent throughout the internal capsule, corpus callosum, and cerebellum within 24 hours after blast exposure and was sustained for at least 7 days. Astrocyte activation, as measured morphologically with brains immunostained for glial fibrillary acidic protein, was also apparent early after the blast and persisted for at least 30 days. CONCLUSION: Exposure of rats to underbody blast-induced accelerations at either 20 G or 50 G results in histopathologic evidence of diffuse axonal injury and astrocyte activation but no significant neuronal death. The significance of these results is that they demonstrate that blast-induced vertical acceleration alone, in the absence of exposure to significant blast pressures, causes mild TBI. This unique animal model of TBI caused by underbody blasts may therefore be useful in understanding the pathophysiology of blast-induced mild TBI and for testing medical and engineering-based approaches toward mitigation.


Assuntos
Traumatismos por Explosões/patologia , Lesões Encefálicas/patologia , Aceleração/efeitos adversos , Animais , Traumatismos por Explosões/etiologia , Bombas (Dispositivos Explosivos) , Encéfalo/patologia , Lesões Encefálicas/etiologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley
13.
Neuroimage ; 59(1): 467-77, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-21835250

RESUMO

Diffusion Kurtosis Imaging (DKI) provides quantifiable information on the non-Gaussian behavior of water diffusion in biological tissue. Changes in water diffusion tensor imaging (DTI) parameters and DKI parameters in several white and gray matter regions were investigated in a mild controlled cortical impact (CCI) injury rat model at both the acute (2 h) and the sub-acute (7 days) stages following injury. Mixed model ANOVA analysis revealed significant changes in temporal patterns of both DTI and DKI parameters in the cortex, hippocampus, external capsule and corpus callosum. Post-hoc tests indicated acute changes in mean diffusivity (MD) in the bilateral cortex and hippocampus (p<0.0005) and fractional anisotropy (FA) in ipsilateral cortex (p<0.0005), hippocampus (p=0.014), corpus callosum (p=0.031) and contralateral external capsule (p=0.011). These changes returned to baseline by the sub-acute stage. However, mean kurtosis (MK) was significantly elevated at the sub-acute stages in all ipsilateral regions and scaled inversely with the distance from the impacted site (cortex and corpus callosum: p<0.0005; external capsule: p=0.003; hippocampus: p=0.011). Further, at the sub-acute stage increased MK was also observed in the contralateral regions compared to baseline (cortex: p=0.032; hippocampus: p=0.039) while no change was observed with MD and FA. An increase in mean kurtosis was associated with increased reactive astrogliosis from immunohistochemistry analysis. Our results suggest that DKI is sensitive to microstructural changes associated with reactive astrogliosis which may be missed by standard DTI parameters alone. Monitoring changes in MK allows the investigation of molecular and morphological changes in vivo due to reactive astrogliosis and may complement information available from standard DTI parameters. To date the use of diffusion tensor imaging has been limited to study changes in white matter integrity following traumatic insults. Given the sensitivity of DKI to detect microstructural changes even in the gray matter in vivo, allows the extension of the technique to understand patho-morphological changes in the whole brain following a traumatic insult.


Assuntos
Lesões Encefálicas/patologia , Gliose/patologia , Neuroimagem/métodos , Animais , Anisotropia , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...