Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(7): 3128-3137, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617806

RESUMO

Lacunar spinels, represented by AM4X8 compounds (A = Ga or Ge; M = V, Mo, Nb, or Ta; X = S or Se), form a unique group of ternary chalcogenide compounds. Among them, GeV4S8 has garnered significant attention due to its distinctive electrical and magnetic properties. While previous research efforts have primarily focused on studying how this material behaves under cooling conditions, pressure is another factor that determines the state and characteristics of solid matter. In this study, we employed a diamond anvil cell in conjunction with high-energy synchrotron X-ray diffraction, Raman spectroscopy, four-point probes, and theoretical computation to thoroughly investigate this material. We found that the structural transformation from cubic to orthorhombic was initiated at 34 GPa and completed at 54 GPa. Through data fitting of volume vs pressure, we determined the bulk moduli to be 105 ± 4 GPa for the cubic phase and 111 ± 12 GPa for the orthorhombic phase. Concurrently, electrical resistance measurements indicated a semiconductor-to-nonmetallic conductor transition at ∼15 GPa. Moreover, we experimentally assessed the band gaps at different pressures to validate the occurrence of the electrical phase transition. We infer that the electrical phase transition correlates with the valence electrons in the V4 cluster rather than the crystal structure transformation. Furthermore, the computational results, electronic density of states, and band structure verified the experimental observation and facilitated the understanding of the mechanism governing the electrical phase transition in GeV4S8.

2.
Nat Commun ; 14(1): 5174, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620350

RESUMO

Magnetization reversal in ferro- and ferrimagnets is a well-known archetype of non-equilibrium processes, where the volume fractions of the oppositely magnetized domains vary and perfectly compensate each other at the coercive magnetic field. Here, we report on a fundamentally new pathway for magnetization reversal that is mediated by an antiferromagnetic state. Consequently, an atomic-scale compensation of the magnetization is realized at the coercive field, instead of the mesoscopic or macroscopic domain cancellation in canonical reversal processes. We demonstrate this unusual magnetization reversal on the Zn-doped polar magnet Fe2Mo3O8. Hidden behind the conventional ferrimagnetic hysteresis loop, the surprising emergence of the antiferromagnetic phase at the coercive fields is disclosed by a sharp peak in the field-dependence of the electric polarization. In addition, at the magnetization reversal our THz spectroscopy studies reveal the reappearance of the magnon mode that is only present in the pristine antiferromagnetic state. According to our microscopic calculations, this unusual process is governed by the dominant intralayer coupling, strong easy-axis anisotropy and spin fluctuations, which result in a complex interplay between the ferrimagnetic and antiferromagnetic phases. Such antiferro-state-mediated reversal processes offer novel concepts for magnetization control, and may also emerge for other ferroic orders.

3.
Sci Rep ; 13(1): 11069, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422590

RESUMO

Recent neutron scattering experiments suggested that frustrated magnetic interactions give rise to antiferromagnetic spiral and fractional skyrmion lattice phases in MnSc[Formula: see text]S[Formula: see text] . Here, to trace the signatures of these modulated phases, we studied the spin excitations of MnSc[Formula: see text]S[Formula: see text] by THz spectroscopy at 300 mK and in magnetic fields up to 12 T and by broadband microwave spectroscopy at various temperatures up to 50 GHz. We found a single magnetic resonance with frequency linearly increasing in field. The small deviation of the Mn[Formula: see text] ion g-factor from 2, g = 1.96, and the absence of other resonances imply very weak anisotropies and negligible contribution of higher harmonics to the spiral state. The significant difference between the dc magnetic susceptibility and the lowest-frequency ac susceptibility in our experiment implies the existence of mode(s) outside of the measured frequency windows. The combination of THz and microwave experiments suggests a spin gap opening below the ordering temperature between 50 GHz and 100 GHz.


Assuntos
Frustração , Campos Magnéticos , Anisotropia , Micro-Ondas , Espectroscopia de Ressonância Magnética
4.
Sci Rep ; 13(1): 2411, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765082

RESUMO

The lacunar-spinel chalcogenides exhibit magnetic centers in the form of transition-metal tetrahedra. On the basis of density-functional computations, the electronic ground state of an Mo413+ tetrahedron has been postulated as single-configuration a12 e4 t25, where a1, e, and t2 are symmetry-adapted linear combinations of single-site Mo t2g atomic orbitals. Here we unveil the many-body tetramer wave-function: we show that sizable correlations yield a weight of only 62% for the a12 e4 t25 configuration. While spin-orbit coupling within the peculiar valence orbital manifold is still effective, the expectation value of the spin-orbit operator and the g factors deviate from figures describing nominal t5 jeff = 1/2 moments. As such, our data documents the dressing of a spin-orbit jeff = 1/2 object with intra-tetramer excitations. Our results on the internal degrees of freedom of these magnetic moments provide a solid theoretical starting point in addressing the intriguing phase transitions observed at low temperatures in these materials.

5.
J Phys Chem Lett ; 13(7): 1681-1686, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35148106

RESUMO

Spin-orbit quartet ground states are associated with rich phenomenology, ranging from multipolar phases in f1 rare-earth borides to magnetism emerging through covalency and vibronic couplings in d1 transition-metal compounds. The latter effect has been studied since the 1960s on t2g1 octahedral ML6 units in both molecular complexes and extended solid-state lattices. Here we analyze the Jeff = 3/2 quartet ground state of larger cubane-like M4L4 entities in lacunar spinels, composed of transition-metal (M) tetrahedra caged by chalcogenide ligands (L). These represent a unique platform where spin-orbit coupling acts on molecular-like, delocalized t2 orbitals. Using quantum chemical methods, we pin down the interplay of spin-orbit couplings in such a setting and many-body physics related to other molecular-like single-electron levels, both below and above the reference t21. We provide a different interpretation of resonant inelastic X-ray scattering data on GaTa4Se8 and, by comparing magnetic susceptibility data with calculated g factors, valuable insights into the important role of vibronic couplings.

6.
Sci Adv ; 3(3): e1601982, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28345038

RESUMO

Frustrated magnets provide a promising avenue for realizing exotic quantum states of matter, such as spin liquids and spin ice or complex spin molecules. Under an external magnetic field, frustrated magnets can exhibit fractional magnetization plateaus related to definite spin patterns stabilized by field-induced lattice distortions. Magnetization and ultrasound experiments in MnCr2S4 up to 60 T reveal two fascinating features: (i) an extremely robust magnetization plateau with an unusual spin structure and (ii) two intermediate phases, indicating possible realizations of supersolid phases. The magnetization plateau characterizes fully polarized chromium moments, without any contributions from manganese spins. At 40 T, the middle of the plateau, a regime evolves, where sound waves propagate almost without dissipation. The external magnetic field exactly compensates the Cr-Mn exchange field and decouples Mn and Cr sublattices. In analogy to predictions of quantum lattice-gas models, the changes of the spin order of the manganese ions at the phase boundaries of the magnetization plateau are interpreted as transitions to supersolid phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...