Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 922: 171273, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408675

RESUMO

Litter pollution is a growing concern, including for Antarctica and the species that inhabit this ecosystem. In this study, we investigated the microplastic contamination in three seal species that inhabit the Western Antarctic Peninsula: crabeater (Lobodon carcinophaga), leopard (Hydrurga leptonyx) and Weddell (Leptonychotes weddellii) seals. Given the worldwide ubiquity of this type of contaminant, including the Southern Ocean, we hypothesized that the three seal species would present anthropogenic debris in their feces. We examined 29 scat samples of crabeater (n = 5), leopard (n = 13) and Weddell (n = 11) seals. The chemical composition of the items found were identified using micro-Raman and micro-FTIR spectroscopies. All the samples of the three species presented anthropic particles (frequency of occurrence - %FO - 100 %). Fibers were the predominant debris, but fragments and filaments were also present. Particles smaller than 5 mm (micro debris) were predominant in all the samples. Leopard seals ingested significantly larger micro-debris in comparison with the other seal species. The dominant color was black followed by blue and white. Micro-Raman and micro-FTIR Spectroscopies revealed the presence of different anthropogenic pigments such as reactive blue 238, Indigo 3600 and copper phthalocyanine (blue and green). Carbon black was also detected in the samples, as well as plastic polymers such as polystyrene, polyester and polyethylene terephthalate (PET), polyamide, polypropylene and polyurethane These results confirm the presence of anthropogenic contamination in Antarctic seals and highlight the need for actions to mitigate the effects and reduce the contribution of debris in the Antarctic ecosystem.


Assuntos
Caniformia , Focas Verdadeiras , Animais , Regiões Antárticas , Plásticos , Ecossistema
2.
Environ Pollut ; 332: 121873, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244532

RESUMO

Plastics are abundant artificial substrates in aquatic systems that host a wide variety of organisms (the plastisphere), including potential pathogens and invasive species. Plastisphere communities have many complex, but not well-understood ecological interactions. It is pivotal to investigate how these communities are influenced by the natural fluctuations in aquatic ecosystems, especially in transitional environments such as estuaries. Further study is needed in subtropical regions in the Southern Hemisphere, where plastic pollution is ever increasing. Here we applied DNA-metabarcoding (16S, 18S and ITS-2) as well Scanning Electron Microscopy (SEM) to assess the diversity of the plastisphere in the Patos Lagoon estuary (PLE), South Brazil. Through a one-year in situ colonization experiment, polyethylene (PE) and polypropylene (PP) plates were placed in shallow waters, and sampled after 30 and 90 days within each season. Over 50 taxa including bacteria, fungi and other eukaryotes were found through DNA analysis. Overall, the polymer type did not influence the plastisphere community composition. However, seasonality significantly affected community composition for bacteria, fungi and general eukaryotes. Among the microbiota, we found Acinetobacter sp., Bacillus sp., and Wallemia mellicola that are putative pathogens of aquatic organisms, such as algae, shrimp and fish, including commercial species. In addition, we identified organisms within genera that can potentially degrade hydrocarbons (e.g. Pseudomonas and Cladosporium spp). This study is the first to assess the full diversity and variation of the plastisphere on different polymers within a subtropical Southern Hemisphere estuary, significantly expanding knowledge on plastic pollution and the plastisphere in estuarine regions.


Assuntos
Incrustação Biológica , Plásticos , Polímeros , Estuários , Estações do Ano , Ecossistema , Eucariotos , Fungos , Bactérias/genética
3.
Mar Pollut Bull ; 190: 114814, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933358

RESUMO

Litter is known to negatively affect numerous marine organisms, but the extent of such impacts is not well known for several groups, including cephalopods. Considering the ecological, behavioral and economic importance of these animals, we reviewed the types of interactions between cephalopods and litter in the scientific literature, to evaluate impacts and knowledge gaps. We found 30 papers, which included records of microplastic ingestion and the transfer of synthetic microfibers along the food web. The largest number of records involved litter use as shelter, and the common octopus was the most frequent species. At first sight, litter use as shelter could appear to be a potential positive effect, but it is necessary to clarify the implications of this choice and its long-term consequences. Regarding ingestion and trophic transfer, further research is needed to elucidate its occurrence and impacts on cephalopods and their predators, including humans.


Assuntos
Cefalópodes , Poluentes Químicos da Água , Humanos , Animais , Monitoramento Ambiental , Plásticos , Poluentes Químicos da Água/análise , Organismos Aquáticos
4.
Chemosphere ; 308(Pt 1): 136178, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36037943

RESUMO

Since seafood is considered an important source of organotin compounds (OTCs), the present study assessed the potential risk to human health of ingesting butyltins (BTs) and phenyltins (PhTs) along with this type of food. Seafood samples were collected at five fishing sites in the Yucatán Peninsula (Mexico) during February and March 2018. In general, organotins were detected in all samples, suggesting a widespread occurrence of these compounds in the investigated region. The average concentration of total organotins in the muscle of demersal fish (Lutjanus synagris, Lutjanus campechanus, Calamus pennatula, Haemulon plumierii, Rhomboplites aurorubens), pelagic fish (Euthynnus alletteratus, and Opisthonema oglinum), gastropods (Melongena bispinosa and Strombus pugilis), oyster (Crassostrea virginica) and shrimp (Penaeus duorarum) was 146.7 ± 76.2, 93.1 ± 92.6, 61.0 ± 53.0, 76.7 ± 2.6, and 28.8 ± 2.7 ng Sn g-1 dry weight, respectively. Overall, MPhT among PhTs was the dominant compound in fish, while TBT among BTs was the dominant compound in shellfish. Regarding the toxic OTCs, TBT followed by DBT were the predominant compounds in all seafood species, while TPhT was below the quantification limit in most samples. The estimated daily intake values were lower than the tolerable daily intake (TDI) for the sum of organotins established by the European Food Safety Authority (EFSA). Furthermore, the hazard quotients (HQ) and hazard indices (HI) values were all lower than 1, suggesting that daily exposure to these levels of organotins is unlikely to cause any harm to the human health of seafood consumers at the Yucatán Peninsula. Thus, consumers may not be at risk through the inclusion of these investigated seafood species in their normal diet. However, due to the increasing coastal urbanization, maritime activities, and the likely illegal use of tin-based paints in Mexico, additional monitoring is needed to assess organotin levels in other regions along the Mexican coastal zone and using other seafood species.


Assuntos
Contaminação de Alimentos , Compostos Orgânicos de Estanho , Poluentes Químicos da Água , Animais , Humanos , Monitoramento Ambiental , Contaminação de Alimentos/análise , México , Compostos Orgânicos de Estanho/análise , Alimentos Marinhos/análise , Estanho , Poluentes Químicos da Água/análise
5.
J Hazard Mater ; 427: 128162, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34999408

RESUMO

Levels of booster biocides (Irgarol, diuron, chlorothalonil, dichlofluanid and DCOIT), organotins (TBT, DBT, MBT, TPhT, DPhT and MPhT) and antifouling paint particles (APPs) were assessed in sediments of sites under the influence of maritime activities along the coastal zone of the Yucatán Peninsula, Mexico. Imposex incidence and organotin levels were also evaluated in seven caenogastropod species. The incidence of imposex was detected in five species from sites nearby fishing harbors and marinas, including the first reports to Gemophos tinctus and Melongena bispinosa. Butyltins levels were higher than phenyltins in gastropod tissues, sediments, and APPs. Regarding booster biocides, chlorothalonil was the most frequently detected compound and DCOIT was the most abundant biocide in sediments. DCOIT levels were registered in APPs from fishing harbors and marina areas. In addition, the highest levels of TBT, Irgarol, diuron and DCOIT exceeded the threshold limits set by international sediment quality guidelines, indicating that toxic effects could be expected in some of the studied areas, thus being a potential threat to marine life. Based on such outputs, Mexico urgently needs to adopt restrictive actions aiming at conserving the rich biological heritage of the Yucatán Peninsula.


Assuntos
Incrustação Biológica , Desinfetantes , Poluentes Químicos da Água , Incrustação Biológica/prevenção & controle , Desinfetantes/análise , Desinfetantes/toxicidade , Monitoramento Ambiental , Sedimentos Geológicos , México , Pintura , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Mar Pollut Bull ; 175: 113339, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35093780

RESUMO

Benthic octopuses have been widely documented in artificial shelters for decades, and this use is apparently increasing. Despite any possible positive effects, the use of litter as shelter could have negative implications. In this work, we aimed to elucidate the interactions of octopuses with marine litter, identifying types of interactions and affected species and regions. To achieve this, we obtained 261 underwater images from 'citizen science' records, and identified 8 genera and 24 species of benthic octopuses interacting with litter. Glass objects were present in 41.6% of interactions, and plastic in 24.7%. Asia presented the highest number of images, and most records were from 2018 to 2021. Citizen science provided important evidence on octopus/marine litter interactions, highlighting its value and the need for more investigations on the subject. This information is fundamental to help prevent and mitigate the impacts of litter on octopuses, and identify knowledge gaps that require attention.


Assuntos
Ciência do Cidadão , Octopodiformes , Animais , Ásia , Monitoramento Ambiental/métodos , Plásticos , Alimentos Marinhos , Resíduos/análise
7.
Sci Total Environ ; 805: 150186, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818771

RESUMO

The lack of information about plastic pollution in many marine regions hinders firm actions to manage human activities and mitigate their impacts. This study conducted for the first time a quali-quantitative evaluation of floating plastics and their associated biota from coastal and oceanic waters in South Brazil. Plastics were collected using a manta net, and were categorized according to their shape, size, malleability and polymer composition. Multi-marker DNA metabarcoding (16S, and 18S V4 and V9 rRNA regions) was performed to identify prokaryotes and eukaryotes associated to plastics. We found 371 likely plastic particles of several sizes, shapes and polymers, and the average concentration of plastics at the region was 4461 items.km-2 (SD ± 3914). Microplastics (0.5 - 5 mm) were dominant in most sampling stations, with fragments and lines representing the most common shapes. Diverse groups of prokaryotes (20 bacteria phyla) and eukaryotes (41 groups) were associated with plastics. Both the community composition and richness of epiplastic organisms were highly variable between individual plastics but, in general, were not influenced by plastic categories. Organisms with potential pathogenicity (e.g. Vibrio species. and Alexandrium tamarense), as well as potential plastic degraders (e.g. Ralstonia, Pseudomonas, and Alcanivorax species), were found. The information generated here is pivotal to support strategies to prevent the input and mitigate the impacts of plastics and their associated organisms on marine environments.


Assuntos
Plásticos , Poluentes Químicos da Água , Biota , Monitoramento Ambiental , Humanos , Microplásticos , Oceanos e Mares , Poluentes Químicos da Água/análise
8.
Environ Pollut ; 280: 116927, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33784564

RESUMO

Litter is an ecological, economic, and social problem that impacts marine environments around the world. To create prevention and mitigation measures to solve this issue, it is necessary to understand the amounts and sources of this type of pollution. Cassino Beach is an extensive sandy beach located in South Brazil (∼220 km in length) that presents multiple uses, such as touristic, portuary and fishery activities. In order to evaluate the spatial and seasonal variation of litter amounts, types and sources at Cassino Beach, litter (>2.5 cm) was collected over 27 months at two urban and two non-urban sites. At each site, the litter present in three 200 m2 areas was sampled and evaluated. A total of 19,457 items were collected, mostly composed by plastic (∼88%). Paper, metal, and cloth items were also present, but in low amounts. Fragments and cigarette butts were the major types of plastic litter, with abundances of 28.4% and 17.0%, respectively. Urban sites presented higher amounts of litter, with those related to beach use being more common, emphasizing the contribution of beachgoers to litter input at these sites. During the summer season, when beach use increases, the highest total litter concentration was found. Undefined and/or beach use-related sources were dominant in all sites and seasons. Mapping the predominant materials, types and potential sources of litter creates important baseline data that can contribute not only to beach monitoring, but also to the development of litter reduction strategies.


Assuntos
Praias , Resíduos , Brasil , Monitoramento Ambiental , Plásticos , Resíduos/análise
9.
Environ Pollut ; 267: 115508, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32916433

RESUMO

Rising concentrations of plastics in the oceans are leading to increasing negative interactions with marine biota, including ingestion by endangered and/or economically important seafood species such as fish. In this paper, we visually evaluated plastic debris ingestion by 965 specimens of eight commercially exploited fish species from different marine habitats off the southeast-south coast of Brazil. All species ingested plastics, with pelagic animals having higher amounts, frequency of occurrence, diversity and sizes of ingested items than demersal-pelagic and demersal animals. Highest frequency of occurrence (FO%) of plastic ingestion (25.8%) was observed for the pelagic skipjack tuna Katsuwonus pelamis (Scombridae), and lowest (5%) for the demersal bluewing searobin Prionotus punctatus (Triglidae). Microplastics predominated in all species, and fibers/lines and fragments were the main items found, possibly derived from fishing materials. The most abundant plastic colors were transparent, black and blue, and the most common polymers were polyamide and polyurethane. With the available data, no relationship between the size of the individuals and amount of ingested plastics was observed. Considering the negative impacts of plastic ingestion on marine fish, and potentially on human health due to their consumption, understanding ingestion patterns is critical for better evaluating their origin and possible causes, and consequently for helping define prevention strategies for this problem.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Brasil , Ingestão de Alimentos , Monitoramento Ambiental , Humanos , Oceanos e Mares , Poluentes Químicos da Água/análise
10.
Genet Mol Biol ; 43(2): e20190098, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353097

RESUMO

Marine turtle hybridization is usually sporadic and involves reports of only a few individuals; however, Brazilian populations have high hybridization rates. Here we investigated the presence of hybrids in morphologically identified immature hawksbills (Eretmochelys imbricata) along the South Western Atlantic (SWA). We sequenced one mitochondrial (D-Loop) and three nuclear DNA (RAG1, RAG2, and CMOS) markers to better understand the patterns and characteristics of hybrids. We identified 22 hybrids (n = 270), 11 of them at the extreme South of the SWA. Uruguay had the highest hybrid frequency in the SWA (~37.5%) followed by southern Brazil with 30%. These are common areas for loggerheads (Caretta caretta) but uncommon for hawksbills, and these hybrids may be adopting the behavior of loggerheads. By analyzing nuclear markers, we can infer that 50% of the sampled hybrids are first generation (F1) and 36% are the result of backcrosses between hybrids and pure E. imbricata (> F1). We also report for the first time immature E. imbricata x Lepidochelys olivacea hybrids at the Brazilian coast. Considering the high frequency of hybrids in the SWA, continuous monitoring should be performed to assess the fitness, genetic integrity, and extent of changes in the gene pools of involved populations.

11.
Mol Ecol ; 29(10): 1903-1918, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32270556

RESUMO

Marine plastic pollution has a range of negative impacts for biota and the colonization of plastics in the marine environment by microorganisms may have significant ecological impacts. However, data on epiplastic organisms, particularly fungi, is still lacking for many ocean regions. To evaluate plastic associated fungi and their geographic distribution, we characterised plastics sampled from surface waters of the western South Atlantic (WSA) and Antarctic Peninsula (AP), using DNA metabarcoding of three molecular markers (ITS2, 18S rRNA V4 and V9 regions). Numerous taxa from eight fungal phyla and a total of 64 orders were detected, including groups that had not yet been described associated with plastics. There was a varied phylogenetic assemblage of predominantly known saprotrophic taxa within the Ascomycota and Basidiomycota. We found a range of marine cosmopolitan genera present on plastics in both locations, i.e., Aspergillus, Cladosporium, Wallemia and a number of taxa unique to each region, as well as a high variation of taxa such as Chytridiomycota and Aphelidomycota between locations. Within these basal fungal groups we identified a number of phylogenetically novel taxa. This is the first description of fungi from the Plastisphere within the Southern Hemisphere, and highlights the need to further investigate the potential impacts of plastic associated fungi on other organisms and marine ecosystems.


Assuntos
Fungos/classificação , Plásticos , Poluentes da Água , Regiões Antárticas , Código de Barras de DNA Taxonômico , Filogenia
12.
Sci Rep ; 9(1): 3977, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850657

RESUMO

Although marine plastic pollution has been the focus of several studies, there are still many gaps in our understanding of the concentrations, characteristics and impacts of plastics in the oceans. This study aimed to quantify and characterize plastic debris in oceanic surface waters of the Antarctic Peninsula. Sampling was done through surface trawls, and mean debris concentration was estimated at 1,794 items.km-2 with an average weight of 27.8 g.km-2. No statistical difference was found between the amount of mesoplastics (46%) and microplastics (54%). We found hard and flexible fragments, spheres and lines, in nine colors, composed mostly of polyurethane, polyamide, and polyethylene. An oceanographic dispersal model showed that, for at least seven years, sampled plastics likely did not originate from latitudes lower than 58°S. Analysis of epiplastic community diversity revealed bacteria, microalgae, and invertebrate groups adhered to debris. Paint fragments were present at all sampling stations and were approximately 30 times more abundant than plastics. Although paint particles were not included in plastic concentration estimates, we highlight that they could have similar impacts as marine plastics. We call for urgent action to avoid and mitigate plastic and paint fragment inputs to the Southern Ocean.

13.
Mar Pollut Bull ; 140: 536-548, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30803675

RESUMO

The ingestion of plastic marine litter (PML) by sea turtles is widespread and concerning, and the five species that occur in the southwestern Atlantic - green, loggerhead, olive ridley, leatherback and hawksbill - are vulnerable to this pollution. Here, we quantified and characterized PML ingested by these species in southern Brazil, and observed PML ingestion in 49 of 86 sampled individuals (~57.0%). Green turtles presented the highest rates and variety of ingested plastics, and such ingestion has been high at least since 1997. Omnivorous turtles presented higher PML ingestion than carnivorous ones. Loggerheads displayed a negative correlation between body size and number of ingested items. Green turtles ingested mostly flexible transparent and flexible/hard white plastics; loggerheads ate mainly flexible, hard and foam fragments, in white and black/brown colors. These results help us better understand PML ingestion by sea turtles, highlighting the seriousness of this threat and providing information for prevention and mitigation strategies.


Assuntos
Monitoramento Ambiental/métodos , Trato Gastrointestinal/química , Plásticos/análise , Resíduos Sólidos/análise , Tartarugas/metabolismo , Poluentes Químicos da Água/análise , Animais , Oceano Atlântico , Brasil , Ingestão de Alimentos , Plásticos/química
14.
Environ Sci Technol ; 52(2): 446-456, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29185716

RESUMO

Here we report concentrations of pollutants in floating plastics from the North Pacific accumulation zone (NPAC). We compared chemical concentrations in plastics of different types and sizes, assessed ocean plastic potential risks using sediment quality criteria, and discussed the implications of our findings for bioaccumulation. Our results suggest that at least a fraction of the NPAC plastics is not in equilibrium with the surrounding seawater. For instance, "hard plastic" samples had significantly higher PBDE concentrations than "nets and ropes" samples, and 29% of them had PBDE composition similar to a widely used flame-retardant mixture. Our findings indicate that NPAC plastics may pose a chemical risk to organisms as 84% of the samples had at least one chemical exceeding sediment threshold effect levels. Furthermore, our surface trawls collected more plastic than biomass (180 times on average), indicating that some NPAC organisms feeding upon floating particles may have plastic as a major component of their diets. If gradients for pollutant transfer from NPAC plastic to predators exist (as indicated by our fugacity ratio calculations), plastics may play a role in transferring chemicals to certain marine organisms.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Organismos Aquáticos , Monitoramento Ambiental , Oceano Pacífico , Plásticos , Água do Mar
15.
R Soc Open Sci ; 3(5): 160142, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27293795

RESUMO

We examined the effect of artificial light on the near shore trajectories of turtle hatchlings dispersing from natal beaches. Green turtle (Chelonia mydas) hatchlings were tagged with miniature acoustic transmitters and their movements tracked within an underwater array of 36 acoustic receivers placed in the near shore zone. A total of 40 hatchlings were tracked, 20 of which were subjected to artificial light during their transit of the array. At the same time, we measured current speed and direction, which were highly variable within and between experimental nights and treatments. Artificial lighting affected hatchling behaviour, with 88% of individual trajectories oriented towards the light and spending, on average, 23% more time in the 2.25 ha tracking array (19.5 ± 5 min) than under ambient light conditions (15.8 ± 5 min). Current speed had little to no effect on the bearing (angular direction) of the hatchling tracks when artificial light was present, but under ambient conditions it influenced the bearing of the tracks when current direction was offshore and above speeds of approximately 32.5 cm s(-1). This is the first experimental evidence that wild turtle hatchlings are attracted to artificial light after entering the ocean, a behaviour that is likely to subject them to greater risk of predation. The experimental protocol described in this study can be used to assess the effect of anthropogenic (light pollution, noise, etc.) and natural (wave action, current, wind, moonlight) influences on the in-water movements of sea turtle hatchlings during the early phase of dispersal.

16.
PLoS One ; 11(4): e0153124, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27064977

RESUMO

Population connectivity in the blue crab Callinectes sapidus was evaluated along 740 km of the Western South Atlantic coast. Blue crabs are the most exploited portunid in Brazil. Despite their economic importance, few studies report their ecology or population structure. Here we sampled four estuarine areas in southern Brazil during winter 2013 and summer 2014 in order to evaluate diversity, gene flow and structure of these populations. Nine microsatellite markers were evaluated for 213 adult crabs, with identification of seven polymorphic loci and 183 alleles. Pairwise FST values indicated low population structure ranging from -0.00023 to 0.01755. A Mantel test revealed that the geographic distance does not influence genetic (r = -0.48), and structure/migration rates confirmed this, showing that even the populations located at the opposite extremities of our covered region presented low FST and exchanged migrants. These findings show that there is a significant amount of gene flow between blue crab populations in South Brazil, likely influenced by local current dynamics that allow the transport of a high number of larvae between estuaries. Considering the elevated gene flow, the populations can be considered a single genetic stock. However, further information on population size and dynamics, as well as fishery demands and impacts at different regions, are necessary for harvest management purposes.


Assuntos
Braquiúros/genética , Fluxo Gênico , Repetições de Microssatélites/genética , Animais , Brasil , Estuários , Dinâmica Populacional , Estações do Ano
17.
PLoS One ; 9(6): e100289, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24941218

RESUMO

Millimeter-sized plastics are abundant in most marine surface waters, and known to carry fouling organisms that potentially play key roles in the fate and ecological impacts of plastic pollution. In this study we used scanning electron microscopy to characterize biodiversity of organisms on the surface of 68 small floating plastics (length range = 1.7-24.3 mm, median = 3.2 mm) from Australia-wide coastal and oceanic, tropical to temperate sample collections. Diatoms were the most diverse group of plastic colonizers, represented by 14 genera. We also recorded 'epiplastic' coccolithophores (7 genera), bryozoans, barnacles (Lepas spp.), a dinoflagellate (Ceratium), an isopod (Asellota), a marine worm, marine insect eggs (Halobates sp.), as well as rounded, elongated, and spiral cells putatively identified as bacteria, cyanobacteria, and fungi. Furthermore, we observed a variety of plastic surface microtextures, including pits and grooves conforming to the shape of microorganisms, suggesting that biota may play an important role in plastic degradation. This study highlights how anthropogenic millimeter-sized polymers have created a new pelagic habitat for microorganisms and invertebrates. The ecological ramifications of this phenomenon for marine organism dispersal, ocean productivity, and biotransfer of plastic-associated pollutants, remains to be elucidated.


Assuntos
Bactérias/crescimento & desenvolvimento , Cianobactérias/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Fungos/crescimento & desenvolvimento , Invertebrados/fisiologia , Plásticos/metabolismo , Poluentes Químicos da Água/metabolismo , Distribuição Animal/fisiologia , Animais , Austrália , Biodegradação Ambiental , Ecossistema , Monitoramento Ambiental , Oceanos e Mares , Plásticos/química , Resíduos , Movimentos da Água
18.
PeerJ ; 2: e255, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24688839

RESUMO

Hybridization between hawksbill (Eretmochelys imbricata) and loggerhead (Caretta caretta) breeding groups is unusually common in Bahia state, Brazil. Such hybridization is possible because hawksbill and loggerhead nesting activities overlap temporally and spatially along the coast of this state. Nevertheless, the destinations of their offspring are not yet known. This study is the first to identify immature hawksbill × loggerhead hybrids (n = 4) from this rookery by analyzing the mitochondrial DNA (mtDNA) of 157 immature turtles morphologically identified as hawksbills. We also compare for the first time modeled dispersal patterns of hawksbill, loggerhead, and hybrid offspring considering hatching season and oceanic phase duration of turtles. Particle movements varied according to season, with a higher proportion of particles dispersing southwards throughout loggerhead and hybrid hatching seasons, and northwards during hawksbill season. Hybrids from Bahia were not present in important hawksbill feeding grounds of Brazil, being detected only at areas more common for loggerheads. The genetic and oceanographic findings of this work indicate that these immature hybrids, which are morphologically similar to hawksbills, could be adopting behavioral traits typical of loggerheads, such as feeding in temperate waters of the western South Atlantic. Understanding the distribution, ecology, and migrations of these hybrids is essential for the development of adequate conservation and management plans.

19.
PLoS One ; 9(2): e88746, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24558419

RESUMO

Understanding the connections between sea turtle populations is fundamental for their effective conservation. Brazil hosts important hawksbill feeding areas, but few studies have focused on how they connect with nesting populations in the Atlantic. Here, we (1) characterized mitochondrial DNA control region haplotypes of immature hawksbills feeding along the coast of Brazil (five areas ranging from equatorial to temperate latitudes, 157 skin samples), (2) analyzed genetic structure among Atlantic hawksbill feeding populations, and (3) inferred natal origins of hawksbills in Brazilian waters using genetic, oceanographic, and population size information. We report ten haplotypes for the sampled Brazilian sites, most of which were previously observed at other Atlantic feeding grounds and rookeries. Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current. Our genetic analysis estimates that the studied Brazilian feeding aggregations are mostly composed of animals originating from the domestic rookeries Bahia and Pipa, but some contributions from African and Caribbean rookeries were also observed. Oceanographic data corroborated the local origins, but showed higher connection with West Africa and none with the Caribbean. High correlation was observed between origins estimated through genetics/rookery size and oceanographic/rookery size data, demonstrating that ocean currents and population sizes influence haplotype distribution of Brazil's hawksbill populations. The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations.


Assuntos
Oceanografia , Tartarugas/genética , Animais , Brasil , DNA Mitocondrial/genética , Comportamento Alimentar , Variação Genética , Haplótipos , Densidade Demográfica , Tartarugas/crescimento & desenvolvimento
20.
PLoS One ; 8(11): e80466, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312224

RESUMO

Plastics represent the vast majority of human-made debris present in the oceans. However, their characteristics, accumulation zones, and transport pathways remain poorly assessed. We characterised and estimated the concentration of marine plastics in waters around Australia using surface net tows, and inferred their potential pathways using particle-tracking models and real drifter trajectories. The 839 marine plastics recorded were predominantly small fragments ("microplastics", median length = 2.8 mm, mean length = 4.9 mm) resulting from the breakdown of larger objects made of polyethylene and polypropylene (e.g. packaging and fishing items). Mean sea surface plastic concentration was 4256.4 pieces km(-2), and after incorporating the effect of vertical wind mixing, this value increased to 8966.3 pieces km(-2). These plastics appear to be associated with a wide range of ocean currents that connect the sampled sites to their international and domestic sources, including populated areas of Australia's east coast. This study shows that plastic contamination levels in surface waters of Australia are similar to those in the Caribbean Sea and Gulf of Maine, but considerably lower than those found in the subtropical gyres and Mediterranean Sea. Microplastics such as the ones described here have the potential to affect organisms ranging from megafauna to small fish and zooplankton.


Assuntos
Plásticos , Resíduos , Poluentes Químicos da Água , Austrália , Monitoramento Ambiental , Geografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...