Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36975710

RESUMO

One of the emerging water desalination techniques relies on the compression of a polyelectrolyte gel. The pressures needed reach tens of bars, which are too high for many applications, damage the gel and prevent its reuse. Here, we study the process by means of coarse-grained simulations of hydrophobic weak polyelectrolyte gels and show that the necessary pressures can be lowered to only a few bars. We show that the dependence of applied pressure on the gel density contains a plateau indicating a phase separation. The phase separation was also confirmed by an analytical mean-field theory. The results of our study show that changes in the pH or salinity can induce the phase transition in the gel. We also found that ionization of the gel enhances its ion capacity, whereas increasing the gel hydrophobicity lowers the pressure required for gel compression. Therefore, combining both strategies enables the optimization of polyelectrolyte gel compression for water desalination purposes.

2.
Soft Matter ; 17(3): 580-591, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33200761

RESUMO

Computer-aided modeling is a systematic approach to grasp the physics of macromolecules, but it remains essential to know when to trust the results and when not. For a polymer star, we consider three approaches: (i) Molecular Dynamics (MD) simulations and implementing a coarse-grained model, (ii) the self-consistent field approach based on a mean-field approximation and implementing the lattice model due to Scheutjens and Fleer (SF-SCF) and (iii) novel hybrid Monte Carlo self-consistent field (MC-SCF) method, which combines a coarse-grained model driven by a Monte Carlo method and a mean-field representation driven by SF-SCF. We compare the performance of these approaches under a wide range of solvent qualities. The MD approach is formally the most exact but suffers from reasonable convergence. The mean-field approach works similarly in all solvent qualities but is quantitatively least accurate. The MC-SCF hybrid allows us to combine the benefits of the simulation route and the effective performance of SCF. We consider the center-to-end distance Rce, the radius of gyration Rg2 of the star and the polymer density profiles φ(r) of polymer-segments in it. All three methods show a good qualitative agreement one to another. The MC-SCF method is in good agreement with the scaling predictions in the whole range of solvent quality values showing that it grasps the essential physics while remaining computationally in bounds.

3.
Soft Matter ; 16(1): 208-218, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31774442

RESUMO

Conformational transitions and nanoscale self-organization triggered in double pH- and thermo-responsive molecular brushes by varying environmental conditions are studied by means of analytical mean-field theory and numerical Scheutjens-Fleer self-consistent field modelling. Such molecular brushes are composed of multiple thermo-responsive side chains end-grafted onto the main chain (backbone) and are capable of acquiring ionic charges via reversible (de)protonation of the monomer units. Competition of long-range Coulomb repulsion with short-range solvophobic interactions leads to complex patterns in the intramolecular self-organization of molecular brushes. In particular, we observed formation of pearl necklace-like structures with multiple dense nanodomains formed by weakly ionized collapsed side chains and stabilized by a fraction protruding into the solution and strongly ionized ones. Such structures are thermodynamically stable in a certain parameter range and can be termed as intramolecular micelles. The stimuli-induced intramolecular nanopatterning occurs via a sequence of quasi-first order phase transitions corresponding to splitting/fusion of collapsed domains accompanied by jumps in the average degree of ionization and macromolecular dimensions. A re-entrant sequence of transitions is observed when the salt concentration is used as a control parameter. These theoretical predictions provide guidelines for design of smart unimolecular devices, for example multicompartment nanocarriers of active substances or nanosensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...