Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1321202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420205

RESUMO

Introduction: It has been recognized that capripoxvirus infections have a strong cutaneous tropism with the manifestation of skin lesions in the form of nodules and scabs in the respective hosts, followed by necrosis and sloughing off. Considering that the skin microbiota is a complex community of commensal bacteria, fungi and viruses that are influenced by infections leading to pathological states, there is no evidence on how the skin microbiome is affected during capripoxvirus pathogenesis. Methods: In this study, shotgun metagenomic sequencing was used to investigate the microbiome in pox lesions from hosts infected with lumpy skin disease virus and sheep pox virus. Results: The analysis revealed a high degree of variability in bacterial community structures across affected skin samples, indicating the importance of specific commensal microorganisms colonizing individual hosts. The most common and abundant bacteria found in scab samples were Fusobacterium necrophorum, Streptococcus dysgalactiae, Helcococcus ovis and Trueperella pyogenes, irrespective of host. Bacterial reads belonging to the genera Moraxella, Mannheimia, Corynebacterium, Staphylococcus and Micrococcus were identified. Discussion: This study is the first to investigate capripox virus-associated changes in the skin microbiome using whole-genome metagenomic profiling. The findings will provide a basis for further investigation into capripoxvirus pathogenesis. In addition, this study highlights the challenge of selecting an optimal bioinformatics approach for the analysis of metagenomic data in clinical and veterinary practice. For example, direct classification of reads using a kmer-based algorithm resulted in a significant number of systematic false positives, which may be attributed to the peculiarities of the algorithm and database selection. On the contrary, the process of de novo assembly requires a large number of target reads from the symbiotic microbial community. In this work, the obtained sequencing data were processed by three different approaches, including direct classification of reads based on k-mers, mapping of reads to a marker gene database, and de novo assembly and binning of metagenomic contigs. The advantages and disadvantages of these techniques and their practicality in veterinary settings are discussed in relation to the results obtained.

2.
Virus Genes ; 42(2): 212-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21188626

RESUMO

Porcine respiratory coronavirus is related genetically to porcine transmissible gastroenteritis virus with a large deletion in S protein. The respiratory virus is a mutated form that may be a consequence of the gastroenteritis virus's evolution. Intensive passages of the virus in its natural host may enhance the appearance of mutations and therefore may contribute to any attenuated form of the virus. The objective of this study was to characterize the porcine transmissible gastroenteritis virus TMK22 strain after passages in piglets from 1992 until 2007. A typical experimental infection, molecular characterization, and serological analysis were also carried out to further characterize and to evaluate any significant difference between strains. The sequence analysis showed two amino acid deletions and loss of an N-glycosylation site in transmissible gastroenteritis virus S protein after passages in piglets. Although these deletions were positioned at the beginning of the antigenic site B of S protein, no clinical differences were observed in piglets infected experimentally either with the native virus or the mutated one. Serological tests did not show any antibody reactivity difference between the two strains. In this article, we report that the S protein deletion did not affect the virus's pathogenicity. The variety of the virus's evolutionary forms may be a result, not only of the multiple passages in natural hosts, but also of other factors, such as different pathogens co-infection, nutrition, immunity, and others. Further studies need to be carried out to characterize the mutated strain.


Assuntos
Glicoproteínas de Membrana/genética , Mutação Puntual , RNA Viral , Suínos/virologia , Vírus da Gastroenterite Transmissível/genética , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Gastroenterite Suína Transmissível/virologia , Glicoproteínas de Membrana/biossíntese , Dados de Sequência Molecular , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...