Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 19(1): e202300913, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37971488

RESUMO

Nucleophilic substitution of pertosylated pillar[5]arene (P-OTs) with commercially available sulfur containing nucleophiles (KSCN, KSAc, and thiophenol), yields a series of sulfur-functionalised pillar[5]arenes. DLS results and SEM images imply that these pillararene macrocycles self-assemble in acetonitrile solution, while X-ray crystallographic evidence suggests solvent-dependent assembly in the solid state. The nature of the sulfur substituents decorating the rim of the pillararene controls binding affinities towards organic guest encapsulations within the cavity and dictates metal-ion binding properties through the formation of favorable S-M2+ coordination bonds outside the cavity, as determined by 1 H NMR and fluorescence spectroscopic experiments. Addition of a dinitrile guest containing a bis-triazole benzene spacer (btn) induced formation of pseudorotaxane host-guest complexes. Fluorescence emission signals from these discrete macrocycles were significantly attenuated in the presence of either Hg2+ or Cu2+ in solution. Analogous titrations utilizing the corresponding pseudorotaxanes alter the binding selectivity and improve fluorescence sensing sensitivity. In addition, preliminary liquid-liquid extraction studies indicate that the macrocycles facilitate the transfer of Cu2+ from the aqueous to the organic phase in comparison to extraction without pillar[5]arene ligands.

2.
Chem Asian J ; 19(1): e202300808, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37926693

RESUMO

Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves using light to activate photosensitizers (PSs). Attractively, PDT is one of the alternative cancer treatments due to its noninvasive technique. By utilizing the heavy atom effect, this work modified a class of formazan dyes to improve intersystem crossing (ISC) to improve reactive oxygen species (ROS) generation for PDT treatment. Two methods were used to observe the ROS generation enhanced by ISC of the synthesized complexes including, (1) recording DPBF decomposition caused by the ROS, and (2) calculating the potential energy curves for photophysical mechanisms of BF2 -formazanate dyes using the DFT and nudged elastic band (NEB) methods. The photophysical properties of the dyes were studied using spectroscopic techniques and X-ray crystallography, as well as DFT calculations. The experimental and theoretical results and in vitro cellular assays confirmed the potential use of the newly synthesized iodinated BF2 -formazanate dyes in PDT.

3.
Beilstein J Org Chem ; 19: 1664-1676, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942020

RESUMO

Herein, we report the synthesis and characterization of an efficient ambipolar charge-carrier-transporting deep-red fluorophore (TPECNz) based on a donor-acceptor-donor (D-A-D)-type molecule and its application as a non-doped emitter in an organic light-emitting diode (OLED). The fluorophore TPECNz contains naphtho[2,3-c][1,2,5]thiadiazole (Nz) as a strong acceptor unit symmetrically functionalized with N-(4-(1,2,2-triphenylvinyl)phenyl)carbazole as a donor and aggregation-induced emission (AIE) luminogen. The experimental (solvatochromic and emission in THF/water mixtures studies) and theoretical investigations prove that TPECNz retains cooperative hybridized local and charge transfer (HLCT) and weak AIE features. Thanks to its D-A-D-type structure with a proper twist angle between the D and A units, a strong electron deficiency of the Nz unit, and electron-donating and hole-transporting natures of carbazole, TPECNz exhibits a strong deep red emission (λem = 648 nm) with a high fluorescence quantum yield of 96%, outstanding thermal property (Tg = 236 °C), and ambipolar charge-carrier-transporting property with a decent balance of mobility of electrons (1.50 × 10-5 cm2 V-1 s-1) and holes (4.42 × 10-6 cm2 V-1 s-1). TPECNz is successfully employed as a non-doped emitter in an OLED which displays deep red electroluminescent emission peaked at 659 nm with CIE coordinates of (0.664, 0.335)), an EQEmax of 3.32% and exciton utilization efficiency (EUE) of 47%.

4.
Org Lett ; 25(46): 8183-8187, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37902783

RESUMO

The structures of potent cytotoxic cycloheptapeptides, mallotumides A-C (1-3, respectively) isolated from the roots of Mallotus spodocarpus Airy Shaw, were elucidated by extensive spectroscopic analysis. The absolute configuration of 1 was determined by single-crystal X-ray crystallographic data. All three cycloheptapeptides exhibited potent cytotoxicity against various cancer cell lines with IC50 values ranging from 0.60 to 4.02 nM.


Assuntos
Antineoplásicos , Mallotus (Planta) , Peptídeos Cíclicos , Linhagem Celular Tumoral , Cristalografia por Raios X , Mallotus (Planta)/química , Estrutura Molecular , Raízes de Plantas/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia
5.
RSC Adv ; 13(26): 18138-18144, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333729

RESUMO

An easy-to-use, highly selective, and real-time organic solvent quality assessment is desirable to detect water contamination in organic solvents. Herein, a one-step procedure using ultrasound irradiation was used for encapsulating nanoscale carbon dots (CDs) into metal-organic framework-199 (HKUST-1) to form CDs@HKUST-1 composite. The CDs@HKUST-1 exhibited very weak fluorescence due to photo-induced electron transfer (PET) from the CDs to the Cu2+ centers, acting as a fluorescent sensor in its off-state. The designed material can detect and discriminate water from other organic solvents, driven by turn-on fluorescence. This highly sensitive sensing platform could be applied for the detection of water in ethanol, acetonitrile, and acetone with wide linear detection ranges of 0-70% v/v, 2-12% v/v, and 10-50% v/v and limits of detection of 0.70% v/v, 0.59% v/v, and 1.08% v/v, respectively. The detection mechanism is attributed to the interruption of the PET process due to the release of fluorescent CDs after treatment with water. A smartphone-based quantitative test was successfully developed to monitor the water content in organic solvents utilizing CDs@HKUST-1 and a phone color processing application, thus making it possible to develop an on-site, real time and easy-to-use sensor for water detection.

6.
Small ; 19(32): e2302714, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37154235

RESUMO

Chiral molecules have recently received renewed interest as highly efficient sources of spin-selective charge emission known as chiral-induced spin selectivity (CISS), which potentially offers a fascinating utilization of organic chiral materials in novel solid-state spintronic devices. However, a practical use of CISS remains far from completion, and rather fundamental obstacles such as (i) external controllability of spin, (ii) function durability, and (iii) improvement of spin-polarization efficiency have not been surmounted to date. In this study, these issues are addressed by developing a self-assembled monolayer (SAM) of overcrowded alkene (OCA)-based molecular motor. With this system, it is successfully demonstrated that the direction of spin polarization can be externally and repeatedly manipulated in an extremely stable manner by switching the molecular chirality, which is achieved by a formation of the covalent bonds between the molecules and electrode. In addition, it is found that a higher stereo-ordering architecture of the SAM of OCAs tailored by mixing them with simple alkanethiols considerably enhances the efficiency of spin polarization per a single OCA molecule. All these findings provide the creditable feasibility study for strongly boosting development of CISS-based spintronic devices that can simultaneously fulfill the controllability, durability, and high spin-polarization efficiency.

7.
J Org Chem ; 88(9): 5403-5419, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019432

RESUMO

Persulfate-promoted radical cascade trifluoromethylthiolation and cyclization of 3-alkyl-1-(2-(alkynyl)phenyl)indoles with AgSCF3 were investigated. This protocol provides a novel route to CF3S-substituted indolo[1,2-a]quinoline-7-carbaldehydes and CF3S-substituted indolo[1,2-a]quinoline-7-methanone derivatives via the formation of the C-SCF3 bond and C-C bond and benzylic carbon oxidation in a single step. This reaction can accommodate a broad range of functional groups. The single-crystal X-ray diffraction data confirm the chemical structure of the product. A scale-up experiment and radical inhibition experiments were operated in the reaction system. Photophysical properties of some selected 5-((trifluoromethyl)thio)indolo[1,2-a]quinoline-7-carbaldehydes were studied by UV-visible and fluorescence spectroscopy.

8.
RSC Adv ; 13(15): 10384-10396, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37020885

RESUMO

The contamination of tetracycline antibiotics and dihydrogen phosphate (H2PO4 -) in food and the environment is one of the major concerns for human health. Herein, a water-stable carboxyl-functionalized europium metal-organic framework (Eu-MOF) was prepared and demonstrated, for the first time, as a dual-responsive fluorescent sensor of tetracycline antibiotics (oxytetracycline (OTC), tetracycline (TC), and doxycycline (DOX)) and H2PO4 - via fluorescent turn-on and turn-off, respectively. Eu-MOF presents a sensitive and selective detection of OTC with a rapid response time (1 min) and good anti-interference ability. The limits of detection (LODs) of 78 nm, 225 nm, and 201 nM were achieved for OTC, TC, and DOX, respectively. Coordination and hydrogen bonding led to energy and electron transfer from the TC to the MOF, contributing to the fluorescent enhancement mechanism. Moreover, Eu-MOF can effectively detect H2PO4 - via fluorescence turn-off with a LOD of 0.70 µM. The interactions between H2PO4 - and MOF interrupt the energy transfer from ligand to MOF, leading to fluorescence quenching. In addition, Eu-MOF was successfully applied to determine OTC and H2PO4 - in real samples, obtaining satisfactory recoveries and RSDs. More fascinating, Eu-MOF could be utilized to develop latent fingerprints on various surfaces, providing well-defined fluorescent fingerprint details in which the sweat pores can be seen with the naked eye.

9.
Dalton Trans ; 52(8): 2209-2213, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36762541

RESUMO

We present a new intensely phosphorescent Pb(II) coordination polymer (1) containing a heteroatomic ligand. It has a quantum yield of 21.62% and a lifetime of 25.46 µs. The naked-eye solid-state photoluminescence of 1 significantly changes in response to acidic vapors and thermal treatment, indicating the coexistence of acidochromic and thermochromic luminescence.

10.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558063

RESUMO

Herein, new deep-blue triplet-triplet annihilation (TTA) molecules, namely 4-(10-(4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenyl)anthracen-9-yl)benzonitrile (TPIAnCN) and 4-(12-(4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenyl)chrysen-6-yl)benzonitrile (TPIChCN), are designed, synthesized, and investigated as emitters for organic light-emitting diodes (OLED). TPIAnCN and TPIChCN are composed of polyaromatic hydrocarbons of anthracene (An) and chrysene (Ch) as the cores functionalized with tetraphenylimidazole (TPI) and benzonitrile (CN) moieties, respectively. The experimental and theoretical results verify their excellent thermal properties, photophysical properties, as well as electrochemical properties. Particularly, their emissions are in the deep blue region, with TTA emissions being observed in their thin films. By utilization of these molecules as emitters, deep blue TTA OLEDs with CIE coordinates of (0.15, 0.05), high external quantum efficiency of 6.84%, and high exciton utilization efficiency (ηs) of 48% were fabricated. This result manifests the potential use of chrysene as an alternate building block to formulate new TTA molecules for accomplishing high-performance TTA OLEDs.

11.
Inorg Chem ; 61(30): 11734-11745, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35862584

RESUMO

The use of vapor-responsive chromic materials in sensing applications for the detection of harmful volatile organic chemicals is rapidly expanding. Herein, four new amino-functionalized Cu(I) coordination polymers of [CuI(pyt-NH2)]n (1) and (2) and [CuSCN(pyt-NH2)]n (3) and (4) (where pyt-NH2 = 2-amino-5-(4-pyridinyl)-1,3,4-thiadiazole) were successfully synthesized. Single-crystal X-ray diffraction analysis reveals that 1 and 2 are iodo-based polymorphs, while 3 and 4 are thiocyanato-based polymorphs. They possess densely diverse crystalline architectures decorated by uncoordinated amino groups as a binding site. Also, 1-4 show a variety of color and luminescence based on the structural diversity. Remarkably, 1 and 2 undergo the change of color and naked-eye solid-state luminescence in response to formaldehyde (FA) vapor, demonstrating simultaneous vapochromism and vapoluminescence. The chromic Cu(I) coordination polymers in this work present for the first time dual-mode vapochromism and vapoluminescence in a highly selective response to FA vapor. The responsive mechanism has been clarified by Fourier transform infrared spectroscopy (FT-IR), electrospray ionization mass spectrometry (ESI-MS), 1H nuclear magnetic resonance (NMR), powder X-ray diffraction (PXRD), and luminescence lifetime measurements, which reveal carbinolamine formation via the specific reaction between FA and the active amino groups of coordinated pyt-NH2. The carbinolamine formation can trigger the structural transformation of 1 and 2, leading to the concurrently selective vapochromism and vapoluminescence induced by FA vapor.


Assuntos
Cobre , Compostos Orgânicos Voláteis , Cobre/química , Formaldeído , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier
12.
ACS Omega ; 7(23): 19465-19473, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35721919

RESUMO

Chirality plays an important role in the pharmaceutical industry since the two enantiomers of a drug molecule usually display significantly different bioactivities, and hence, most products are produced as pure enantiomers. However, many drug precursors are synthesized as racemates, and hence, enantioseparation has become a significant process in the industry. Cocrystallization is one of the attractive crystallization approaches to obtain the desired enantiomer from racemic compounds. In this work, we propose a chiral resolution route for an antiepileptic drug, S-etiracetam (S-ETI), via enantiospecific cocrystallization with S-2-chloro-S-mandelic acid (CLMA) as a coformer. The experiments indicate that the system is highly enantiospecific; S-2CLMA cocrystallizes only with S-ETI but not with R-ETI or RS-ETI. Therefore, the chiral purification of S-ETI can be achieved efficiently with a 69.1% yield and close to 100% enantiopurity from the racemic solution. Additionally, structural simulations of the S-ETI:S-2CLMA cocrystal reveal that the cocrystal structure has higher thermodynamic stability than that of R-ETI:S-2CLMA by about 5.5 kcal/mol (per cocrystal formula unit), which helps to confirm the favorability of the enantiospecification in this system.

13.
Adv Mater ; 34(31): e2203796, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35703912

RESUMO

The charge generation-recombination dynamics in three narrow-bandgap near-IR absorbing nonfullerene (NFA) based organic photovoltaic (OPV) systems with varied donor concentrations of 40%, 30%, and 20% are investigated. The dilution of the polymer donor with visible-range absorption leads to highly transparent active layers with blend average visible transmittance (AVT) values of 64%, 70%, and 77%, respectively. Opaque devices in the optimized highly reproducible device configuration comprising these transparent active layers lead to photoconversion efficiencies (PCEs) of 7.0%, 6.5%, and 4.1%. The investigation of these structures yields quantitative insights into changes in the charge generation, non-geminate charge recombination, and extraction dynamics upon dilution of the donor. Lastly, this study gives an outlook for employing the highly transparent active layers in semitransparent organic photovoltaics (ST-OPVs).

14.
Chem Asian J ; 17(14): e202200266, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35608795

RESUMO

Herein, three hydroxy-tetraphenylimidazole (HPI)-based fluorophores (HPI-TPA, HPI-PCz, and HPI-CzP) are designed and synthesized by disubstituted HPI core with arylamine units of triphenylamine (TPA), phenyl carbazole (PCz), and carbazole phenyl (CzP) at 3,5-positions of the N-phenyl ring of HPI, respectively. Their photophysical properties are theoretically and experimentally examined. HPI-TPA shows a hybridized local and charge transfer (HLCT) excited state characteristic and emits deep blue color via an HLCT mechanism, while both HPI-PCz and HPI-CzP exhibit excited-state intramolecular proton transfer (ESIPT) property and display pure keto form emissions. They possess high thermal stability and are successfully fabricated as emitters in organic light-emitting diodes (OLEDs). All devices exhibit intense blue color emissions with low turn-on voltages (3.5-3.7 V). Particularly, HPI-TPA-based OLED emits light in the deep-blue region with a high maximum external quantum efficiency (EQEmax ) of 3.77% and a decent efficiency roll-off.

15.
Adv Mater ; 34(23): e2200274, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35362210

RESUMO

Reconfigurable organic logic devices are promising candidates for next generations of efficient computing systems and adaptive electronics. Ideally, such devices would be of simple structure and design, be power efficient, and compatible with high-throughput microfabrication techniques. This work reports an organic reconfigurable logic gate based on novel dual-mode organic electrochemical transistors (OECTs), which employ a self-doped conjugated polyelectrolyte as the active material, which then allows the transistors to operate in both depletion mode and enhancement mode. Furthermore, mode switching is accomplished by simply altering the polarity of the applied gate and drain voltages, which can be done on the fly. In contrast, achieving similar mode-switching functionality with other organic transistors typically requires complex molecular design or multi-device engineering. It in shown that dual-mode functionality is enabled by the concurrent existence of anion doping and cation dedoping of the films. A device physics model that accurately describes the behavior of these transistors is developed. Finally, the utility of these dual-mode transistors for implementing reconfigurable logic by fabricating a logic gate that may be switched between logic gates AND to NOR, and OR to NAND on the fly is demonstrated.

16.
Angew Chem Int Ed Engl ; 61(18): e202117608, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35139250

RESUMO

Most metal-organic frameworks (MOFs) lack charge mobility, which is crucial for realizing their use in optoelectronic applications. This work proposes the design of a MOF using triarylamine-based ligands (Zr-NBP) as the lone pair electron spacer to enhance the hole mobility in the MOF while maintaining its luminescent properties. Zr-NBP has strong fluorescence with a good hole mobility of 1.05×10-6  cm2 V-1 s-1 , which is comparable to organic materials used in optoelectronic devices. We also employed a Zr-NBP nanofilm in the pure phase as both a non-doped emissive layer and a hole-transporting layer within organic light-emitting diodes (OLEDs). The obtained OLED device produced a bright green light with a low turn-on voltage of 3.9 V. This work presents an advance in developing the electronic properties of MOFs by modifying the chemical properties of its building blocks, and will likely inspire further design of MOF materials as active layers in optoelectronic devices.

17.
Talanta ; 236: 122862, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635244

RESUMO

A novel fluorometric assay for selective and sensitive determination of formalin (FA) was developed based on nitrogen-doped carbon dots (N-CDs) coupled with silver mirror reaction. N-CDs was synthesized using the hydrothermal method with the ethylene glycol and ammonia solution as carbon and nitrogen precursors, respectively. The detection principle was based on "off-on" fluorescence switching. Specifically, the fluorescence signal of N-CDs was first turned off after incorporating the Ag+ and Tollens' reagents. Then, in the presence of FA, the Ag+ species on the N-CDs surface were reduced to Ag0 species and the fluorescence signal of N-CDs was switched back on. The fluorescence intensity due to the N-CDs signal linearly increased with the increasing FA concentrations in the range of 5-100 mg L-1, with the detection limit of 1.5 mg L-1. The proposed approach provides rapid, simple, sensitive, and selective detection of FA in various food samples.


Assuntos
Carbono , Pontos Quânticos , Corantes Fluorescentes , Formaldeído , Nitrogênio , Prata
18.
Chem Commun (Camb) ; 57(100): 13712-13715, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34874027

RESUMO

The specific cell capacitance, equivalent series resistance (ESR) and equivalent distributed resistance (EDR) of porous carbon-based supercapacitors linearly depend on the cationic molecular length of room-temperature ionic liquids.

19.
Chem Asian J ; 16(24): 4145-4154, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34716663

RESUMO

Herein, we present a molecular design of chrysene-based deep-blue emissive materials (TC, TpPC, TpXC, and TmPC), in which chrysene as a core is functionalized with different triphenylamine moieties to realize a fine-tuning deep-blue fluorescence with superior electroluminescent (EL) performance. The photophysical analyses and density functional theory (DFT) calculations disclose that TC, TpPC, and TpXC possess HLCT characteristics with intense deep-blue emission in the solid-state, good hole-transporting ability, and high thermal and electrochemical stabilities. They are successfully employed as non-doped emitters in simple structured OLEDs (ITO/PEDOT : PSS : NF/emitter/TPBi/LiF : Al). In particular, TC-based device emits a deep-blue light with an emission peak at 446 nm and CIE color coordinates of (0.148, 0.096), a maximum external quantum efficiency (EQEmax ) of 4.31%, and a low turn-on voltage of 2.8 V.

20.
Anal Methods ; 13(36): 4069-4078, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34554162

RESUMO

A simple strategy to enhance the detection sensitivity of fluorescent sensor-based CdS quantum dots (CdS QDs) for the detection of mercury ions (Hg2+) was demonstrated. L-Cysteine-capped CdS QDs (L-Cyst-CdS QDs) were synthesized and utilized as a probe for selective detection of Hg2+. The fluorescence intensity of the L-Cyst-CdS QDs was quenched in the presence of Hg2+. However, the detection sensitivity was unsatisfactory. Upon the addition of sodium dodecyl sulfate (SDS), the fluorescence intensity of L-Cyst-CdS QDs can be effectively enhanced. On the other hand, the fluorescence intensity of the L-Cyst-CdS QDs in the presence of SDS (SDS@L-Cyst-CdS QDs) was able to be dramatically decreased with the addition of Hg2+. Furthermore, the proposed sensor displayed excellent selectivity towards Hg2+ compared to other cations. Under optimized conditions, the proposed sensor could be applied to detect trace amounts of Hg2+ with a limit of detection of approximately 36 nM. The applicability of this sensor was demonstrated by the determination of Hg2+ in real water samples, and the results agreed with those obtained from cold vapor atomic absorption spectrometry (CVAAS).


Assuntos
Mercúrio , Pontos Quânticos , Corantes Fluorescentes , Espectrometria de Fluorescência , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...