Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(6): 4133-4141, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38812435

RESUMO

The ultimate vaccine against infections caused by Nipah virus should be capable of providing protection at the respiratory tract─the most probable port of entry for this pathogen. Intranasally delivered vaccines, which target nasal-associated lymphoid tissue and induce both systemic and mucosal immunity, are attractive candidates for enabling effective vaccination against this lethal disease. Herein, the water-soluble polyphosphazene delivery vehicle assembles into nanoscale supramolecular constructs with the soluble extracellular portion of the Hendra virus attachment glycoprotein─a promising subunit vaccine antigen against both Nipah and Hendra viruses. These supramolecular constructs signal through Toll-like receptor 7/8 and promote binding interactions with mucin─an important feature of effective mucosal adjuvants. High mass contrast of phosphorus-nitrogen backbone of the polymer enables a successful visualization of nanoconstructs in their vitrified state by cryogenic electron microscopy. Here, we characterize the self-assembly of polyphosphazene macromolecule with biologically relevant ligands by asymmetric flow field flow fractionation, dynamic light scattering, fluorescence spectrophotometry, and turbidimetric titration methods. Furthermore, a polyphosphazene-enabled intranasal Nipah vaccine candidate demonstrates the ability to induce immune responses in hamsters and shows superiority in inducing total IgG and neutralizing antibodies when benchmarked against the respective clinical stage alum adjuvanted vaccine. The results highlight the potential of polyphosphazene-enabled nanoassemblies in the development of intranasal vaccines.


Assuntos
Administração Intranasal , Vírus Nipah , Compostos Organofosforados , Polímeros , Vacinas de Subunidades Antigênicas , Vacinas Virais , Compostos Organofosforados/química , Compostos Organofosforados/administração & dosagem , Polímeros/química , Vírus Nipah/imunologia , Animais , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/química , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/administração & dosagem , Tamanho da Partícula , Teste de Materiais , Materiais Biocompatíveis/química , Nanopartículas/química , Imunização
2.
Viruses ; 11(1)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650570

RESUMO

Simian hemorrhagic fever virus (SHFV) causes a fulminant and typically lethal viral hemorrhagic fever (VHF) in macaques (Cercopithecinae: Macaca spp.) but causes subclinical infections in patas monkeys (Cercopithecinae: Erythrocebus patas). This difference in disease course offers a unique opportunity to compare host responses to infection by a VHF-causing virus in biologically similar susceptible and refractory animals. Patas and rhesus monkeys were inoculated side-by-side with SHFV. Unlike the severe disease observed in rhesus monkeys, patas monkeys developed a limited clinical disease characterized by changes in complete blood counts, serum chemistries, and development of lymphadenopathy. Viral RNA was measurable in circulating blood 2 days after exposure, and its duration varied by species. Infectious virus was detected in terminal tissues of both patas and rhesus monkeys. Varying degrees of overlap in changes in serum concentrations of interferon (IFN)-γ, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6 were observed between patas and rhesus monkeys, suggesting the presence of common and species-specific cytokine responses to infection. Similarly, quantitative immunohistochemistry of livers from terminal monkeys and whole blood flow cytometry revealed varying degrees of overlap in changes in macrophages, natural killer cells, and T-cells. The unexpected degree of overlap in host response suggests that relatively small subsets of a host's response to infection may be responsible for driving hemorrhagic fever pathogenesis. Furthermore, comparative SHFV infection in patas and rhesus monkeys offers an experimental model to characterize host⁻response mechanisms associated with viral hemorrhagic fever and evaluate pan-viral hemorrhagic fever countermeasures.


Assuntos
Infecções por Arterivirus/veterinária , Arterivirus/patogenicidade , Febres Hemorrágicas Virais/veterinária , Interações Hospedeiro-Patógeno , Doenças dos Macacos/imunologia , Animais , Anticorpos Antivirais/sangue , Arterivirus/imunologia , Infecções por Arterivirus/imunologia , Citocinas/sangue , Erythrocebus , Feminino , Febres Hemorrágicas Virais/imunologia , Macaca , Macrófagos/virologia , Masculino , Doenças dos Macacos/virologia , RNA Viral , Replicação Viral
3.
Sci Rep ; 8(1): 655, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330527

RESUMO

The discovery of aquaglyceroporins (AQP) has highlighted a new mechanism of membrane solute transport that may hold therapeutic potential for controlling parasitic infections, including malaria. Plasmodium parasites express a single AQP at the plasma membrane that functions as a channel for water, nutrients and waste into and out cells. We previously demonstrated that Plasmodium berghei targeted for PbAQP deletion are deficient in glycerol import and less virulent than wild-type parasites during the blood developmental stage. Here, we have examined the contribution of PbAQP to the infectivity of P. berghei in the liver. PbAQP is expressed in the sporozoite mosquito stage and is detected at low levels in intrahepatic parasites at the onset of hepatocyte infection. As the parasites progress to late hepatic stages, PbAQP transcription increases and PbAQP localizes to the plasma membrane of hepatic merozoites. Compared to wild-type parasites, PbAQP-null sporozoites exhibit a delay in blood stage infection due to slower replication in hepatocytes, resulting in retardation of merosome production. Furthermore, PbAQP disruption results in a significant reduction in erythrocyte infectivity by hepatocyte-derived merozoites. Hepatic merozoites incorporate exogenous glycerol into glycerophospholipids and PbAQP-null merozoites contain less phosphatidylcholine than wild-type merozoites, underlining the contribution of Plasmodium AQP to phospholipid syntheses.


Assuntos
Aquagliceroporinas/metabolismo , Fígado/parasitologia , Malária/parasitologia , Plasmodium berghei/patogenicidade , Animais , Aquagliceroporinas/genética , Linhagem Celular , Membrana Celular/metabolismo , Eritrócitos/parasitologia , Glicerol/metabolismo , Glicerofosfolipídeos/metabolismo , Camundongos , Plasmodium berghei/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(3): 1035-40, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23277579

RESUMO

Tragically common among children in sub-Saharan Africa, cerebral malaria is characterized by rapid progression to coma and death. In this study, we used a model of cerebral malaria appearing in C57BL/6 WT mice after infection with the rodent malaria parasite Plasmodium berghei ANKA. Expression and cellular localization of the brain water channel aquaporin-4 (AQP4) was investigated during the neurological syndrome. Semiquantitative real-time PCR comparing uninfected and infected mice showed a reduction of brain AQP4 transcript in cerebral malaria, and immunoblots revealed reduction of brain AQP4 protein. Reduction of brain AQP4 protein was confirmed in cerebral malaria by quantitative immunogold EM; however, polarized distribution of AQP4 at the perivascular and subpial astrocyte membranes was not altered. To further examine the role of AQP4 in cerebral malaria, WT mice and littermates genetically deficient in AQP4 were infected with P. berghei. Upon development of cerebral malaria, WT and AQP4-null mice exhibited similar increases in width of perivascular astroglial end-feet in brain. Nevertheless, the AQP4-null mice exhibited more severe signs of cerebral malaria with greater brain edema, although disruption of the blood-brain barrier was similar in both groups. In longitudinal studies, cerebral malaria appeared nearly 1 d earlier in the AQP4-null mice, and reduced survival was noted when chloroquine rescue was attempted. We conclude that the water channel AQP4 confers partial protection against cerebral malaria.


Assuntos
Aquaporina 4/metabolismo , Malária Cerebral/metabolismo , Plasmodium berghei , Animais , Aquaporina 4/deficiência , Aquaporina 4/genética , Astrócitos/patologia , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Edema Encefálico/genética , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Modelos Animais de Doenças , Feminino , Humanos , Malária Cerebral/genética , Malária Cerebral/patologia , Malária Cerebral/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Imunoeletrônica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Proc Natl Acad Sci U S A ; 104(30): 12560-4, 2007 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-17636116

RESUMO

Human and rodent erythrocytes are known to be highly permeable to glycerol. Aquaglyceroporin aquaporin (AQP)3 is the major glycerol channel in human and rat erythrocytes. However, AQP3 expression has not been observed in mouse erythrocytes. Here we report the presence of an aquaglyceroporin, AQP9, in mouse erythrocytes. AQP9 levels rise as reticulocytes mature into erythrocytes and as neonatal pups develop into adult mice. Mice bearing targeted disruption of both alleles encoding AQP9 have erythrocytes that appear morphologically normal. Compared with WT cells, erythrocytes from AQP9-null mice are defective in rapid glycerol transport across the cell membrane when measured by osmotic lysis, [(14)C]glycerol uptake, or stopped-flow light scattering. In contrast, the water and urea permeabilities are intact. Although the physiological role of glycerol in the normal function of erythrocytes is not clear, plasma glycerol is an important substrate for lipid biosynthesis of intraerythrocytic malarial parasites. AQP9-null mice at the age of 4 months infected with Plasmodium berghei survive longer during the initial phase of infection compared with WT mice. We conclude that AQP9 is the major glycerol channel in mouse erythrocytes and suggest that this transport pathway may contribute to the virulence of intraerythrocytic stages of malarial infection.


Assuntos
Aquaporinas/metabolismo , Eritrócitos/metabolismo , Glicerol/metabolismo , Malária/metabolismo , Malária/parasitologia , Plasmodium berghei/patogenicidade , Animais , Aquaporina 1/metabolismo , Aquaporinas/deficiência , Aquaporinas/genética , Diferenciação Celular , Permeabilidade da Membrana Celular , Eritrócitos/citologia , Malária/genética , Malária/patologia , Camundongos , Camundongos Knockout , Taxa de Sobrevida , Virulência
6.
Proc Natl Acad Sci U S A ; 104(7): 2211-6, 2007 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-17284593

RESUMO

The malaria parasite can use host plasma glycerol for lipid biosynthesis and membrane biogenesis during the asexual intraerythrocytic development. The molecular basis for glycerol uptake into the parasite is undefined. We hypothesize that the Plasmodium aquaglyceroporin provides the pathway for glycerol uptake into the malaria parasite. To test this hypothesis, we identified the orthologue of Plasmodium falciparum aquaglyceroporin (PfAQP) in the rodent malaria parasite, Plasmodium berghei (PbAQP), and examined the biological role of PbAQP by performing a targeted deletion of the PbAQP gene. PbAQP and PfAQP are 62% identical in sequence. In contrast to the canonical NPA (Asn-Pro-Ala) motifs in most aquaporins, the PbAQP has NLA (Asn-Leu-Ala) and NPS (Asn-Leu-Ser) in those positions. PbAQP expressed in Xenopus oocytes was permeable to water and glycerol, suggesting that PbAQP is an aquaglyceroporin. In P. berghei, PbAQP was localized to the parasite plasma membrane. The PbAQP-null parasites were viable; however, they were highly deficient in glycerol transport. In addition, they proliferated more slowly compared with the WT parasites, and mice infected with PbAQP-null parasites survived longer. Taken together, these findings suggest that PbAQP provides the pathway for the entry of glycerol into P. berghei and contributes to the growth of the parasite during the asexual intraerythrocytic stages of infection. In conclusion, we demonstrate here that PbAQP plays an important role in the blood-stage development of the rodent malaria parasite during infection in mice and could be added to the list of targets for the design of antimalarial drugs.


Assuntos
Aquagliceroporinas/metabolismo , Eritrócitos/parasitologia , Plasmodium berghei/química , Sequência de Aminoácidos , Animais , Aquagliceroporinas/genética , Aquagliceroporinas/fisiologia , Transporte Biológico , Glicerol/metabolismo , Camundongos , Mutagênese , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/patogenicidade , Proteínas de Protozoários
7.
J Pharmacol Exp Ther ; 303(1): 364-74, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12235272

RESUMO

In conscious, chronically instrumented rats we examined 1) renal tubular functional changes involved in lipopolysaccharide (LPS)-induced acute renal failure; 2) the effects of LPS on the expression of selected renal tubular water and sodium transporters; and 3) effects of milrinone, a phosphodiesterase type 3 (PDE3) inhibitor, and Ro-20-1724, a PDE4 inhibitor, on LPS-induced changes in renal function. Intravenous infusion of LPS (4 mg/kg b.wt. over 1 h) caused an immediate decrease in glomerular filtration rate (GFR) and proximal tubular outflow without changes in mean arterial pressure (MAP). LPS-induced fall in GFR and proximal tubular outflow were sustained on day 2. Furthermore, LPS-treated rats showed a marked increase in fractional distal water excretion, despite significantly elevated levels of plasma vasopressin (AVP). Semiquantitative immunoblotting showed that LPS increased the expression of the Na(+),K(+),2Cl(-)-cotransporter (BSC1) in the thick ascending limb, whereas the expression of the AVP-regulated water channel aquaporin-2 in the collecting duct (CD) was unchanged. Pretreatment with milrinone or Ro-20-1724 enhanced LPS-induced increases in plasma tumor necrosis factor-alpha and lactate, inhibited the LPS-induced tachycardia, and exacerbated the acute LPS-induced fall in GFR. Furthermore, Ro-20-1724-treated rats were unable to maintain MAP. We conclude 1) PDE3 or PDE4 inhibition exacerbates LPS-induced renal failure in conscious rats; and 2) LPS treated rats develop an escape from AVP in the CDs, which could be aimed to protect against water intoxication in septic conditions associated with decreased GFR and high levels of AVP.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , 4-(3-Butoxi-4-metoxibenzil)-2-imidazolidinona/farmacologia , Injúria Renal Aguda/induzido quimicamente , Taxa de Filtração Glomerular/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Inibidores de Fosfodiesterase/farmacologia , Injúria Renal Aguda/fisiopatologia , Animais , Arginina Vasopressina/sangue , Glicemia/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Feminino , Frequência Cardíaca/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...