Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 12(9): 9223-9232, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30016066

RESUMO

Stretchable nanocomposite conductors are essential for engineering of bio-inspired deformable electronics, human-machine interfaces, and energy storage devices. While the effect of strain on conductivity for stretchable conductors has been thoroughly investigated, the strain dependence of multiple other electrical-transport processes and parameters that determine the functionalities and biocompatibility of deformable electrodes has received virtually no attention. The constancy of electrochemical parameters at electrode-fluid interfaces such as redox potentials, impedances, and charge-transfer rate constants on strain is often tacitly assumed. However, it remains unknown whether these foundational assumptions actually hold true for deformable electrodes. Furthermore, it is also unknown whether the previously used charge-transport circuits describing electrochemical processes on rigid electrodes are applicable to deformable electrodes. Here, we investigate the validity of the strain invariability assumptions for an elastic composite electrode based on gold nanoparticles (AuNPs). A comprehensive model of electrode reactions that accurately describes electrochemical processes taking place on nanocomposite electrodes for ferro-/ferricyanide electrochemicals pair at different strains is developed. Unlike rigid gold electrodes, the model circuit for stretchable electrodes is comprised of two parallel impedance segments describing (a) diffusion and redox processes taking place on the open surface of the composite electrode and (b) redox processes that occur in nanopores. AuNPs forming the open-surface circuit support the redox process, whereas those forming the nanopores only increase the double-layer capacitance. The redox potential was found to be strain-independent for tensile deformations as high as 40%. Other parameters, however, display strong strain dependence, exemplified by the 2-2.5 and 27 times increases of active area of the open and nanopore surface area, respectively, after application of 40% strain. Gaining better understanding of the strain-dependent and -independent electrochemical parameters enables both fundamental and practical advances in technologies based on deformable electrodes.

2.
Adv Mater ; 29(32)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28632318

RESUMO

Cost-efficient, visible-light-driven hydrogen production from water is an attractive potential source of clean, sustainable fuel. Here, it is shown that thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size. The chemical structure of the prepared salts is confirmed by the results of X-ray photoelectron and infrared spectroscopies, powder X-ray diffraction and electron microscopy studies, and, in the case of sodium poly(heptazine imide), additionally by atomic pair distribution function analysis and 2D powder X-ray diffraction pattern simulations. In contrast, reactions with LiCl yield thermodynamically stable poly(triazine imides). Owing to the metastability and high structural order, the obtained heptazine imide salts are found to be highly active photocatalysts in Rhodamine B and 4-chlorophenol degradation, and Pt-assisted sacrificial water reduction reactions under visible light irradiation. The measured hydrogen evolution rates are up to four times higher than those provided by a benchmark photocatalyst, mesoporous graphitic carbon nitride. Moreover, the products are able to photocatalytically reduce water with considerable reaction rates, even when glycerol is used as a sacrificial hole scavenger.

3.
Chem Asian J ; 12(13): 1517-1522, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28199049

RESUMO

Highly crystalline potassium (heptazine imides) were prepared by the thermal condensation of substituted 1,2,4-triazoles in eutectic salt melts. These semiconducting salts are already known to be highly active photocatalysts, for example, for the visible-light-driven generation of hydrogen from water. Herein, we show that within the solid-state structure, potassium ions can be exchanged to other metal ions while the crystal habitus is essentially preserved.

4.
ACS Nano ; 10(3): 3166-75, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26863408

RESUMO

Herein, we present an approach to create a hybrid between single-atom-dispersed silver and a carbon nitride polymer. Silver tricyanomethanide (AgTCM) is used as a reactive comonomer during templated carbon nitride synthesis to introduce both negative charges and silver atoms/ions to the system. The successful introduction of the extra electron density under the formation of a delocalized joint electronic system is proven by photoluminescence measurements, X-ray photoelectron spectroscopy investigations, and measurements of surface ζ-potential. At the same time, the principal structure of the carbon nitride network is not disturbed, as shown by solid-state nuclear magnetic resonance spectroscopy and electrochemical impedance spectroscopy analysis. The synthesis also results in an improvement of the visible light absorption and the development of higher surface area in the final products. The atom-dispersed AgTCM-doped carbon nitride shows an enhanced performance in the selective hydrogenation of alkynes in comparison with the performance of other conventional Ag-based materials prepared by spray deposition and impregnation-reduction methods, here exemplified with 1-hexyne.

6.
Chem Commun (Camb) ; 48(9): 1224-6, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22057023

RESUMO

Novel transparent 1D-TiO(2)/few-layer graphene electrodes are realised by the anodic growth of vertically aligned TiO(2) nano-tubes on a few-layer graphene film coated on a glass substrate.

7.
Phys Chem Chem Phys ; 10(44): 6665-76, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18989479

RESUMO

Palladium-gold particles with varied composition were prepared by Pd electrochemical deposition on Au nanoparticles immobilized on model carbon support. Pd-Au/C catalysts were characterized ex situ by transmission electron microscopy, energy dispersive X-ray analysis and X-ray photoelectron spectroscopy, and in situ, by underpotential deposition of hydrogen and copper adatoms, and CO stripping. Hydrogen oxidation reaction on pristine and CO-poisoned Pd-Au/C particles was studied using rotating disk electrode (RDE) technique. It was found that the decrease of the effective Pd overlayer thickness below ca. two monolayers resulted in a two-fold increase of the exchange current density of the hydrogen oxidation reaction and in significant increase of CO tolerance.


Assuntos
Ouro/química , Hidrogênio/química , Nanopartículas/química , Paládio/química , Adsorção , Carbono/química , Monóxido de Carbono/química , Catálise , Cobre/química , Eletroquímica , Microscopia Eletrônica de Transmissão , Oxirredução , Espectrometria por Raios X , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...