Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33764296

RESUMO

Strategies have not been available until recently to uncover interacting protein networks specific to key cell types, their subcellular compartments, and their major regulators during complex in vivo events. Here, we apply BioID2 proximity labeling to capture protein networks acting within cardiomyocytes during a key model of innate heart regeneration in zebrafish. Transgenic zebrafish expressing a promiscuous BirA2 localized to the entire myocardial cell or membrane compartment were generated, each identifying distinct proteomes in adult cardiomyocytes that became altered during regeneration. BioID2 profiling for interactors with ErbB2, a co-receptor for the cardiomyocyte mitogen Nrg1, implicated Rho A as a target of ErbB2 signaling in cardiomyocytes. Blockade of Rho A during heart regeneration, or during cardiogenic stimulation by the mitogenic influences Nrg1, Vegfaa, or vitamin D, disrupted muscle creation. Our findings reveal proximity labeling as a useful resource to interrogate cell proteomes and signaling networks during tissue regeneration in zebrafish.


Assuntos
Coração/fisiologia , Miócitos Cardíacos/metabolismo , Regeneração , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Regeneração/genética , Transdução de Sinais , Peixe-Zebra
2.
Curr Opin Physiol ; 14: 78-85, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32368708

RESUMO

The common laboratory zebrafish can regenerate functional cardiac muscle after cataclysmic damage or loss, by activating programs that direct the division of spared cardiomyocytes. Heart regeneration is not a linear series of molecular steps and synchronized cellular progressions, but rather an imperfect, relentless process that proceeds in an advantaged competition with scarring until recovery of the lost heart function. In this review, we summarize recent advances in our understanding of signaling events that have formative roles in injury-induced cardiomyocyte proliferation in zebrafish, and we forecast advances in the field that are needed to decipher heart regeneration.

3.
Mol Biol Cell ; 31(10): 992-1014, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32129710

RESUMO

Wnt signaling plays key roles in embryonic development and adult stem cell homeostasis and is altered in human cancer. Signaling is turned on and off by regulating stability of the effector ß-catenin (ß-cat). The multiprotein destruction complex binds and phosphorylates ß-cat and transfers it to the SCF-TrCP E3-ubiquitin ligase for ubiquitination and destruction. Wnt signals act though Dishevelled to turn down the destruction complex, stabilizing ß-cat. Recent work clarified underlying mechanisms, but important questions remain. We explore ß-cat transfer from the destruction complex to the E3 ligase, and test models suggesting Dishevelled and APC2 compete for association with Axin. We find that Slimb/TrCP is a dynamic component of the destruction complex biomolecular condensate, while other E3 proteins are not. Recruitment requires Axin and not APC, and Axin's RGS domain plays an important role. We find that elevating Dishevelled levels in Drosophila embryos has paradoxical effects, promoting the ability of limiting levels of Axin to turn off Wnt signaling. When we elevate Dishevelled levels, it forms its own cytoplasmic puncta, but these do not recruit Axin. Superresolution imaging in mammalian cells raises the possibility that this may result by promoting Dishevelled:Dishevelled interactions at the expense of Dishevelled: Axin interactions when Dishevelled levels are high.


Assuntos
Proteína Axina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Desgrenhadas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt , Animais , Proteína Axina/química , Proteínas de Drosophila/química , Feminino , Humanos , Masculino , Ligação Proteica , Domínios Proteicos
4.
Sci Adv ; 6(11): eaax2271, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32195335

RESUMO

Antibodies are essential for elucidating gene function. However, affordable technology for proteome-scale antibody generation does not exist. To address this, we developed Proteome Epitope Tag Antibody Library (PETAL) and its array. PETAL consists of 62,208 monoclonal antibodies (mAbs) against 15,199 peptides from diverse proteomes. PETAL harbors binders for a great multitude of proteins in nature due to antibody multispecificity, an intrinsic antibody feature. Distinctive combinations of 10,000 to 20,000 mAbs were found to target specific proteomes by array screening. Phenotype-specific mAb-protein pairs were found for maize and zebrafish samples. Immunofluorescence and flow cytometry mAbs for membrane proteins and chromatin immunoprecipitation-sequencing mAbs for transcription factors were identified from respective proteome-binding PETAL mAbs. Differential screening of cell surface proteomes of tumor and normal tissues identified internalizing tumor antigens for antibody-drug conjugates. By finding high-affinity mAbs at a fraction of current time and cost, PETAL enables proteome-scale antibody generation and target discovery.


Assuntos
Anticorpos Monoclonais Murinos/química , Epitopos/química , Proteoma/química , Células A549 , Animais , Células HEK293 , Células HL-60 , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células Jurkat , Células K562 , Células MCF-7 , Camundongos , Células PC-3 , Peptídeos , Células THP-1 , Células U937
5.
Mol Biol Cell ; 28(1): 41-53, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852897

RESUMO

Negatively regulating key signaling pathways is critical to development and altered in cancer. Wnt signaling is kept off by the destruction complex, which is assembled around the tumor suppressors APC and Axin and targets ß-catenin for destruction. Axin and APC are large proteins with many domains and motifs that bind other partners. We hypothesized that if we identified the essential regions required for APC:Axin cooperative function and used these data to design a minimal ß-catenin-destruction machine, we would gain new insights into the core mechanisms of destruction complex function. We identified five key domains/motifs in APC or Axin that are essential for their function in reconstituting Wnt regulation. Strikingly, however, certain APC and Axin mutants that are nonfunctional on their own can complement one another in reducing ß-catenin, revealing that the APC:Axin complex is a highly robust machine. We used these insights to design a minimal ß-catenin-destruction machine, revealing that a minimized chimeric protein covalently linking the five essential regions of APC and Axin reconstitutes destruction complex internal structure, size, and dynamics, restoring efficient ß-catenin destruction in colorectal tumor cells. On the basis of our data, we propose a new model of the mechanistic function of the destruction complex as an integrated machine.


Assuntos
Proteína Axina/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Proteína Axina/fisiologia , Linhagem Celular Tumoral , Drosophila/metabolismo , Humanos , Fosforilação , Domínios Proteicos , Proteínas Repressoras/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/fisiologia
6.
PLoS One ; 11(8): e0160509, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486871

RESUMO

Plasmid purification is a basic tool of molecular biologists. Although the development of plasmid isolation kits utilizing silica spin columns reduced the time and labor spent on plasmid purification, achieving large plasmid DNA yields still requires significant time and effort. Here we introduce the Miraprep, a rapid protocol that allows isolation of plasmid DNA using commercial Miniprep kits, but with DNA yields comparable to commercial Maxiprep plasmid purifications. Combining ethanol precipitation with spin column purification, we created a DNA isolation protocol that yields highly concentrated plasmid DNA samples in less than 30 minutes. We show that Miraprep isolated plasmids are as stable as plasmids isolated by standard procedures, can be used for standard molecular biology procedures including DNA sequencing, and can be efficiently transfected into mammalian cells. This new plasmid DNA isolation protocol will significantly reduce time and labor without increasing costs.


Assuntos
Clonagem Molecular/métodos , DNA/isolamento & purificação , Plasmídeos/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Técnicas Bacteriológicas/métodos , Linhagem Celular , Comércio , DNA Bacteriano/isolamento & purificação , Escherichia coli/genética , Humanos , Proteínas/genética , Proteínas/metabolismo , Transfecção/métodos
7.
Elife ; 4: e08022, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26393419

RESUMO

APC, a key negative regulator of Wnt signaling in development and oncogenesis, acts in the destruction complex with the scaffold Axin and the kinases GSK3 and CK1 to target ßcatenin for destruction. Despite 20 years of research, APC's mechanistic function remains mysterious. We used FRAP, super-resolution microscopy, functional tests in mammalian cells and flies, and other approaches to define APC's mechanistic role in the active destruction complex when Wnt signaling is off. Our data suggest APC plays two roles: (1) APC promotes efficient Axin multimerization through one known and one novel APC:Axin interaction site, and (2) GSK3 acts through APC motifs R2 and B to regulate APC:Axin interactions, promoting high-throughput of ßcatenin to destruction. We propose a new dynamic model of how the destruction complex regulates Wnt signaling and how this goes wrong in cancer, providing insights into how this multiprotein signaling complex is assembled and functions via multivalent interactions.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Proteína Axina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Multimerização Proteica , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Linhagem Celular , Drosophila , Humanos , Microscopia de Fluorescência , Mapeamento de Interação de Proteínas , Proteólise
8.
Mol Biol Cell ; 23(11): 2041-56, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22513088

RESUMO

Wnt signaling plays key roles in development and disease. The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling. Its best-characterized role is as part of the destruction complex, targeting the Wnt effector ß-catenin (ßcat) for phosphorylation and ultimate destruction, but several studies suggested APC also may act in the nucleus at promoters of Wnt-responsive genes or to shuttle ßcat out for destruction. Even in its role in the destruction complex, APC's mechanism of action remains mysterious. We have suggested APC positions the destruction complex at the appropriate subcellular location, facilitating ßcat destruction. In this study, we directly tested APC's proposed roles in the nucleus or in precisely localizing the destruction complex by generating a series of APC2 variants to which we added tags relocalizing otherwise wild-type APC to different cytoplasmic locations. We tested these for function in human colon cancer cells and Drosophila embryos. Strikingly, all rescue Wnt regulation and down-regulate Wnt target genes in colon cancer cells, and most restore Wnt regulation in Drosophila embryos null for both fly APCs. These data suggest that APC2 does not have to shuttle into the nucleus or localize to a particular subcellular location to regulate Wnt signaling.


Assuntos
Núcleo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Via de Sinalização Wnt , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Proteínas do Domínio Armadillo/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação para Baixo/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Ácidos Graxos Insaturados/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Mutação/genética , Sinais de Localização Nuclear/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Fatores de Transcrição TCF/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
9.
PLoS One ; 7(2): e31284, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22359584

RESUMO

BACKGROUND: A subset of signaling pathways play exceptionally important roles in embryonic and post-embryonic development, and mis-regulation of these pathways occurs in most human cancers. One such pathway is the Wnt pathway. The primary mechanism keeping Wnt signaling off in the absence of ligand is regulated proteasomal destruction of the canonical Wnt effector ßcatenin (or its fly homolog Armadillo). A substantial body of evidence indicates that SCF(ßTrCP) mediates ßcat destruction, however, an essential role for Roc1 has not been demonstrated in this process, as would be predicted. In addition, other E3 ligases have also been proposed to destroy ßcat, suggesting that ßcat destruction may be regulated differently in different tissues. METHODOLOGY/PRINCIPAL FINDINGS: Here we used cultured Drosophila cells, human colon cancer cells, and Drosophila embryos and larvae to explore the machinery that targets Armadillo for destruction. Using RNAi in Drosophila S2 cells to examine which SCF components are essential for Armadillo destruction, we find that Roc1/Roc1a is essential for regulating Armadillo stability, and that in these cells the only F-box protein playing a detectable role is Slimb. Second, we find that while embryonic and larval Drosophila tissues use the same destruction complex proteins, the response of these tissues to destruction complex inactivation differs, with Armadillo levels more elevated in embryos. We provide evidence consistent with the possibility that this is due to differences in armadillo mRNA levels. Third, we find that there is no correlation between the ability of different APC2 mutant proteins to negatively regulate Armadillo levels, and their recently described function in positively-regulating Wnt signaling. Finally, we demonstrate that APC proteins lacking the N-terminal Armadillo-repeat domain cannot restore Armadillo destruction but retain residual function in negatively-regulating Wnt signaling. CONCLUSIONS/SIGNIFICANCE: We use these data to refine our model for how Wnt signaling is regulated during normal development.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Humanos , Complexos Multiproteicos/fisiologia , Estabilidade Proteica , RNA Mensageiro/análise , beta Catenina/análise , beta Catenina/genética
10.
Curr Biol ; 22(4): R137-9, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22361154

RESUMO

Wnt signaling regulates virtually every cell fate decision during development. How can the same signal trigger such diverse events? Engaging different transcriptional machinery via different protein interfaces on the transcriptional co-activator ß-catenin provides part of the answer.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Camundongos , Proteínas Wnt/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Mol Biol Cell ; 22(11): 1845-63, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21471006

RESUMO

Negatively regulating signaling by targeting key effectors for ubiquitination/destruction is essential for development and oncogenesis. The tumor suppressor adenomatous polyposis coli (APC), an essential negative regulator of Wnt signaling, provides a paradigm. APC mutations occur in most colon cancers. Acting in the "destruction complex" with Axin, glycogen synthase kinase 3, and casein kinase, APC targets ßcatenin (ßcat) for phosphorylation and recognition by an E3 ubiquitin-ligase. Despite 20 years of work, the internal workings of the destruction complex and APC's role remain largely mysterious. We use both Drosophila and colon cancer cells to test hypotheses for APC's mechanism of action. Our data are inconsistent with current models suggesting that high-affinity ßcat-binding sites on APC play key roles. Instead, they suggest that multiple ßcat-binding sites act additively to fine-tune signaling via cytoplasmic retention. We identify essential roles for two putative binding sites for new partners--20-amino-acid repeat 2 and conserved sequence B--in destruction complex action. Finally, we demonstrate that APC interacts with Axin by two different modes and provide evidence that conserved sequence B helps ensure release of APC from Axin, with disassembly critical in regulating ßcat levels. Using these data, we suggest a new model for destruction complex action in development, which also provides new insights into functions of truncated APC proteins in cancer.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos/genética , Animais , Proteína Axina , Sítios de Ligação/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Drosophila , Proteínas de Drosophila/genética , Feminino , Humanos , Larva/genética , Larva/metabolismo , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Organismos Geneticamente Modificados , Estrutura Terciária de Proteína , Deleção de Sequência , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...