Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Comp Biol ; 61(5): 1769-1782, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34009307

RESUMO

Tail movement is an important component of vertebrate locomotion and likely contributes to dynamic stability during steady-state locomotion. Previous results suggest that the tail plays a significant role in lizard locomotion, but little data are available on tail motion during locomotion and how it differs with morphological, ecological, and phylogenetic parameters. We collected high-speed vertical climbing and horizontal locomotion video data from 43 lizard species from four taxonomic groups (Agamidae, Gekkota, Scincidae, and Varanidae) across four habitats. We introduce a new semi-automated and generalizable analysis pipeline for tail and spine motion analysis including markerless pose-estimation, semi-automated kinematic recognition, and muti-species data analysis. We found that step length relative to snout-vent length (SVL) increased with tail length relative to SVL. Examining spine cycles agnostic to limb stride phase, we found that ranges of inter-tail bending compared with inter-spine bending increased with relative tail length, while ranges of tail deflection relative to spine deflection increased with relative speed. Considering stepwise strides, we found the angular velocity and acceleration of the tail center of mass increased with relative speed. These results will provide general insights into the biomechanics of tails in sprawling locomotion enabling biomimetic applications in robotics, and a better understanding of vertebrate form and function. We look forward to adding more species, behaviors, and locomotor speeds to our analysis pipeline through collaboration with other research groups.


Assuntos
Lagartos , Animais , Fenômenos Biomecânicos , Locomoção , Filogenia , Cauda
2.
Proc Biol Sci ; 288(1947): 20202576, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33784869

RESUMO

Locomotion is a key aspect associated with ecologically relevant tasks for many organisms, therefore, survival often depends on their ability to perform well at these tasks. Despite this significance, we have little idea how different performance tasks are weighted when increased performance in one task comes at the cost of decreased performance in another. Additionally, the ability for natural systems to become optimized to perform a specific task can be limited by structural, historic or functional constraints. Climbing lizards provide a good example of these constraints as climbing ability likely requires the optimization of tasks which may conflict with one another such as increasing speed, avoiding falls and reducing the cost of transport (COT). Understanding how modifications to the lizard bauplan can influence these tasks may allow us to understand the relative weighting of different performance objectives among species. Here, we reconstruct multiple performance landscapes of climbing locomotion using a 10 d.f. robot based upon the lizard bauplan, including an actuated spine, shoulders and feet, the latter which interlock with the surface via claws. This design allows us to independently vary speed, foot angles and range of motion (ROM), while simultaneously collecting data on climbed distance, stability and efficiency. We first demonstrate a trade-off between speed and stability, with high speeds resulting in decreased stability and low speeds an increased COT. By varying foot orientation of fore- and hindfeet independently, we found geckos converge on a narrow optimum of foot angles (fore 20°, hind 100°) for both speed and stability, but avoid a secondary wider optimum (fore -20°, hind -50°) highlighting a possible constraint. Modifying the spine and limb ROM revealed a gradient in performance. Evolutionary modifications in movement among extant species over time appear to follow this gradient towards areas which promote speed and efficiency.


Assuntos
Lagartos , Robótica , Animais , Evolução Biológica , Fenômenos Biomecânicos , Extremidades , Lagartos/anatomia & histologia , Locomoção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...