Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 39(21): 9316-28, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21849325

RESUMO

Zinc-finger recombinases (ZFRs) are chimaeric proteins comprising a serine recombinase catalytic domain linked to a zinc-finger DNA binding domain. ZFRs can be tailored to promote site-specific recombination at diverse 'Z-sites', which each comprise a central core sequence flanked by zinc-finger domain-binding motifs. Here, we show that purified ZFRs catalyse efficient high-specificity reciprocal recombination between pairs of Z-sites in vitro. No off-site activity was detected. Under different reaction conditions, ZFRs can catalyse Z-site-specific double-strand DNA cleavage. ZFR recombination activity in Escherichia coli and in vitro is highly dependent on the length of the Z-site core sequence. We show that this length effect is manifested at reaction steps prior to formation of recombinants (binding, synapsis and DNA cleavage). The design of the ZFR protein itself is also a crucial variable affecting activity. A ZFR with a very short (2 amino acids) peptide linkage between the catalytic and zinc-finger domains has high activity in vitro, whereas a ZFR with a very long linker was less recombination-proficient and less sensitive to variations in Z-site length. We discuss the causes of these phenomena, and their implications for practical applications of ZFRs.


Assuntos
Recombinases/química , Recombinases/metabolismo , Dedos de Zinco , Sequência de Aminoácidos , Clivagem do DNA , Dados de Sequência Molecular , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Recombinases/genética , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...