Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(12): e52005, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300588

RESUMO

Nitric oxide (NO) and superoxide (O(2) (-)) are important cardiac signaling molecules that regulate myocyte contraction. For appropriate regulation, NO and O(2) (.-) must exist at defined levels. Unfortunately, the NO and O(2) (.-) levels are altered in many cardiomyopathies (heart failure, ischemia, hypertrophy, etc.) leading to contractile dysfunction and adverse remodeling. Hence, rescuing the nitroso-redox levels is a potential therapeutic strategy. Nitrone spin traps have been shown to scavenge O(2) (.-) while releasing NO as a reaction byproduct; and we synthesized a novel, cell permeable nitrone, 2-2-3,4-dihydro-2H-pyrrole 1-oxide (EMEPO). We hypothesized that EMEPO would improve contractile function in myocytes with altered nitroso-redox levels. Ventricular myocytes were isolated from wildtype (C57Bl/6) and NOS1 knockout (NOS1(-/-)) mice, a known model of NO/O(2) (.-) imbalance, and incubated with EMEPO. EMEPO significantly reduced O(2) (.-) (lucigenin-enhanced chemiluminescence) and elevated NO (DAF-FM diacetate) levels in NOS1(-/-) myocytes. Furthermore, EMEPO increased NOS1(-/-) myocyte basal contraction (Ca(2+) transients, Fluo-4AM; shortening, video-edge detection), the force-frequency response and the contractile response to ß-adrenergic stimulation. EMEPO had no effect in wildtype myocytes. EMEPO also increased ryanodine receptor activity (sarcoplasmic reticulum Ca(2+) leak/load relationship) and phospholamban Serine16 phosphorylation (Western blot). We also repeated our functional experiments in a canine post-myocardial infarction model and observed similar results to those seen in NOS1(-/-) myocytes. In conclusion, EMEPO improved contractile function in myocytes experiencing an imbalance of their nitroso-redox levels. The concurrent restoration of NO and O(2) (.-) levels may have therapeutic potential in the treatment of various cardiomyopathies.


Assuntos
Cálcio/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase Tipo I/fisiologia , Óxido Nítrico/metabolismo , Óxidos de Nitrogênio/farmacologia , Retículo Sarcoplasmático/metabolismo , Animais , Esterificação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Oxirredução , Retículo Sarcoplasmático/efeitos dos fármacos , Marcadores de Spin , Superóxidos/metabolismo
2.
Chem Res Toxicol ; 22(9): 1570-81, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19678661

RESUMO

Nitrones have been employed as spin trapping reagent as well as pharmacological agent against neurodegenerative diseases and ischemia-reperfusion induced injury. The structure-activity relationship was explored for the two types of nitrones, i.e., cyclic (DMPO) and linear (PBN), which are conjugated to a fluorinated amphiphilic carrier (FAC) for their cytoprotective properties against hydrogen peroxide (H(2)O(2)), 3-morpholinosynonimine hydrochloride (SIN-1), and 4-hydroxynonenal (HNE) induced cell death on bovine aortic endothelial cells. The compound FAMPO was synthesized and characterized, and its physical-chemical and spin trapping properties were explored. Cytotoxicity and cytoprotective properties of various nitrones either conjugated and nonconjugated to FAC (i.e., AMPO, FAMPO, PBN, and FAPBN) were assessed using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) reduction assay. Results show that of all the nitrones tested, FAPBN is the most protective against H(2)O(2), but FAMPO and to a lesser extent its unconjugated form, AMPO, are more protective against SIN-1 induced cytotoxicity. However, none of the nitrones used protect the cells from HNE-induced cell death. The difference in the cytoprotective properties observed between the cyclic and linear nitrones may arise from the differences in their intrinsic antioxidant properties and localization in the cell.


Assuntos
Portadores de Fármacos/química , Flúor/química , Óxidos de Nitrogênio/química , Detecção de Spin , Aldeídos/toxicidade , Animais , Anti-Hipertensivos/toxicidade , Bovinos , Reagentes de Ligações Cruzadas/toxicidade , Células Endoteliais/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Molsidomina/análogos & derivados , Molsidomina/toxicidade , Óxidos de Nitrogênio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...