Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 15: 1335682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962237

RESUMO

Deep learning from collaboration occurs if the learner enacts interactive activities in the sense of leveraging the knowledge externalized by co-learners as resource for own inferencing processes and if these interactive activities in turn promote the learner's deep comprehension outcomes. This experimental study investigates whether inducing dyad members to enact constructive preparation activities can promote deep learning from subsequent collaboration while examining prior knowledge as moderator. In a digital collaborative learning environment, 122 non-expert university students assigned to 61 dyads studied a text about the human circulatory system and then prepared individually for collaboration according to their experimental conditions: the preparation tasks varied across dyads with respect to their generativity, that is, the degree to which they required the learners to enact constructive activities (note-taking, compare-contrast, or explanation). After externalizing their answer to the task, learners in all conditions inspected their partner's externalization and then jointly discussed their text understanding via chat. Results showed that more rather than less generative tasks fostered constructive preparation but not interactive collaboration activities or deep comprehension outcomes. Moderated mediation analyses considering actor and partner effects indicated the indirect effects of constructive preparation activities on deep comprehension outcomes via interactive activities to depend on prior knowledge: when own prior knowledge was relatively low, self-performed but not partner-performed constructive preparation activities were beneficial. When own prior knowledge was relatively high, partner-performed constructive preparation activities were conducive while one's own were ineffective or even detrimental. Given these differential effects, suggestions are made for optimizing the instructional design around generative preparation tasks to streamline the effectiveness of constructive preparation activities for deep learning from digital collaboration.

2.
Behav Sci (Basel) ; 13(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37998667

RESUMO

The integration of physical movements, such as gestures, into learning holds potential for enhancing foreign language (L2) education. Uncovering whether actively performing gestures during L2 learning is more, or equally, effective compared to simply observing such movements is central to deepening our understanding of the efficacy of movement-based learning strategies. Here, we present a meta-analysis of seven studies containing 309 participants that compares the effects of gesture self-enactment and observation on L2 vocabulary learning. The results showed that gesture observation was just as effective for L2 learning as gesture enactment, based on free recall, cued L2 recognition, and cued native language recognition performance, with a large dispersion of true effect across studies. Gesture observation may be sufficient for inducing embodied L2 learning benefits, in support of theories positing shared mechanisms underlying enactment and observation. Future studies should examine the effects of gesture-based learning over longer time periods with larger sample sizes and more diverse word classes.

3.
Behav Sci (Basel) ; 13(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37753979

RESUMO

The ability to recognize key causal models across situations is associated with expertise. The acquisition of schema-governed category knowledge of key causal models may underlie this ability. In an experimental study (n = 183), we investigated the effects of promoting the construction of schema-governed categories and how an enhanced ability to recognize the key causal models relates to performance in complex problem-solving tasks that are based on the key causal models. In a 2 × 2 design, we tested the effects of an adapted version of an intervention designed to build abstract mental representations of the key causal models and a tutorial designed to convey conceptual understanding of the key causal models and procedural knowledge. Participants who were enabled to recognize the underlying key causal models across situations as a result of the intervention and the tutorial (i.e., causal sorters) outperformed non-causal sorters in the subsequent complex problem-solving task. Causal sorters outperformed the control group, except for the subtask knowledge application in the experimental group that did not receive the tutorial and, hence, did not have the opportunity to elaborate their conceptual understanding of the key causal models. The findings highlight that being able to categorize novel situations according to their underlying key causal model alone is insufficient for enhancing the transfer of the according concept. Instead, for successful application, conceptual and procedural knowledge also seem to be necessary. By using a complex problem-solving task as the dependent variable for transfer, we extended the scope of the results to dynamic tasks that reflect some of the typical challenges of the 21st century.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...