Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(26): 264503, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23848880

RESUMO

The impact of a drop onto a deep bath of an immiscible liquid is studied with emphasis on the drop fragmentation into a collection of noncoalescing daughter drops. At impact the drop flattens and spreads at the surface of the crater it transiently opens in the bath and reaches a maximum deformation, which gets larger with increasing impact velocity, before surface tension drives its recession. This recession can promote the fragmentation by two different mechanisms: At moderate impact velocity, the drop recession converges to the axis of symmetry to form a jet which then fragments by a Plateau-Rayleigh mechanism. At higher velocity the edge of the receding drop destabilizes and shapes into radial ligaments which subsequently fragment. For this latter mechanism the number N∝We3 and the size distribution of the daughter drops p(d)∝d-4 as a function of the impact Weber number We are explained on the basis of the observed spreading of the drop. The universality of this model for the fragmentation of receding liquid sheets might be relevant for other configurations.

2.
J Acoust Soc Am ; 113(3): 1304-16, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12656365

RESUMO

Due to the large compressibility of gas bubbles, layers of a bubbly liquid surrounded by pure liquid exhibit many resonances that can give rise to a strongly nonlinear behavior even for relatively low-level excitation. In an earlier paper [Druzhinin et al., J. Acoust. Soc. Am. 100, 3570 (1996)] it was pointed out that, by exciting the bubbly layer in correspondence of two resonant modes, so chosen that the difference frequency also corresponds to a resonant mode, it might be possible to achieve an efficient parametric generation of a low-frequency signal. The earlier work made use of a simplified model for the bubbly liquid that ignored the dissipation and dispersion introduced by the bubbles. Here a more realistic description of the bubble behavior is used to study the nonlinear oscillations of a bubble layer under both single- and dual-frequency excitation. It is found that a difference-frequency power of the order of 1% can be generated with incident pressure amplitudes of the order of 50 kPa or so. It appears that similar phenomena would occur in other systems, such as porous waterlike or rubberlike media.

3.
J Acoust Soc Am ; 112(5 Pt 1): 1787-96, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12430793

RESUMO

It is well known that, when a stationary vapor bubble is subject to a sufficiently intense acoustic field, it will grow by rectified heat transfer even in a subcooled liquid. The object of this paper is to study how translation, and the ensuing convective effects, influence this process. It is shown that, depending on the initial temperature distribution and other factors, convection can cause a destabilization of the bubble or its faster growth. Significant effects occur in parameter ranges readily encountered in practice. The phenomena described can therefore be exploited for bubble management, e.g., by increasing the condensation rate or promoting faster bubble growth and coalescence. In a saturated or a superheated liquid, heat rectification and convection reinforce each other and the bubble growth is accelerated by a translatory motion.


Assuntos
Modelos Teóricos , Volatilização , Acústica , Matemática
4.
Phys Rev Lett ; 86(21): 4819-22, 2001 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-11384356

RESUMO

Experiments to study the effect of acoustic forces on individual bubbles in shear flows have been carried out. In the system that we have used, the competition between acoustic and fluid dynamical forces results in a spiraling bubble trajectory. This dynamics is modeled by expressing the balance between Bjerknes and hydrodynamic forces in terms of an ordinary differential equation model, to which a separation of time scales is applied. The success of this model shows that the simple force-balance approach is still meaningful when bubbles are subjected to sound fields.

5.
J Acoust Soc Am ; 107(6): 3130-47, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10875359

RESUMO

A weakly nonlinear theory of the thermoacoustic instability in gas-filled tubes is developed in the time domain by exploiting the difference between the instability time scale and the period of standing waves. By carrying the expansion to fourth order in the perturbation parameter, explicit results for the initial growth, nonlinear evolution, and final saturation are obtained. The dependence of the saturation amplitude upon the temperature difference in the stack, the tube geometry, stack plate spacing, Prandtl number, and other parameters is illustrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...