Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400270, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837531

RESUMO

NMR spectroscopy studies using parahydrogen-induced polarization have previously established the existence of the pairwise hydrogen addition route in the hydrogenation of unsaturated hydrocarbons over heterogeneous catalysts, including those based on rhodium (Rh0). This pathway requires the incorporation of both hydrogen atoms from one hydrogen molecule to the same product molecule. However, the underlying mechanism for such pairwise hydrogen addition must be better understood. The involvement of carbon, either in the form of carbonaceous deposits on the surface of a catalyst or as a metal carbide phase, is known to modify catalytic properties significantly and thus could also affect the pairwise hydrogen addition route. Here, we explored carbon's role by studying the hydrogenation of propene and propyne with parahydrogen on a Rh2C catalyst and comparing the results with those for a Rh0/C catalyst obtained from Rh2C via H2 pretreatment. While the catalysts Rh2C and Rh0/C differ notably in the rate of conversion of parahydrogen to normal hydrogen as well as in terms of hydrogenation activity, our findings suggest that the carbide phase does not play a significant role in the pairwise H2 addition route on rhodium catalysts.

2.
Molecules ; 28(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894520

RESUMO

The influence of the reaction medium on the surface structure and properties of a Ni-based catalyst used for the reductive transformations of O-, N-, and S-containing aromatic substrates under hydrogen transfer conditions has been studied. The catalysts were characterized by XRD, XPS, and IR spectroscopy and TEM methods before and after the reductive reaction. It has been shown that the conversion of 1-benzothiophene causes irreversible poisoning of the catalyst surface with the formation of the Ni2S3 phase, whereas the conversion of naphthalene, 1-benzofuran, and indole does not cause any phase change of the catalyst at 250 °C. However, after the indole conversion, the catalyst surface remains enriched with N-containing compounds, which are evenly distributed over the surface.

3.
JACS Au ; 3(9): 2536-2549, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37772188

RESUMO

The direct synthesis of methanol via the hydrogenation of CO2, if performed efficiently and selectively, is potentially a powerful technology for CO2 mitigation. Here, we develop an active and selective Cu-Zn/SiO2 catalyst for the hydrogenation of CO2 by introducing copper and zinc onto dehydroxylated silica via surface organometallic chemistry and atomic layer deposition, respectively. At 230 °C and 25 bar, the optimized catalyst shows an intrinsic methanol formation rate of 4.3 g h-1 gCu-1 and selectivity to methanol of 83%, with a space-time yield of 0.073 g h-1 gcat-1 at a contact time of 0.06 s g mL-1. X-ray absorption spectroscopy at the Cu and Zn K-edges and X-ray photoelectron spectroscopy studies reveal that the CuZn alloy displays reactive metal support interactions; that is, it is stable under H2 atmosphere and unstable under conditions of CO2 hydrogenation, indicating that the dealloyed structure contains the sites promoting methanol synthesis. While solid-state nuclear magnetic resonance studies identify methoxy species as the main stable surface adsorbate, transient operando diffuse reflectance infrared Fourier transform spectroscopy indicates that µ-HCOO*(ZnOx) species that form on the Cu-Zn/SiO2 catalyst are hydrogenated to methanol faster than the µ-HCOO*(Cu) species that are found in the Zn-free Cu/SiO2 catalyst, supporting the role of Zn in providing a higher activity in the Cu-Zn system.

4.
Materials (Basel) ; 16(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37048912

RESUMO

CO2 methanation was studied in the presence of nickel catalysts obtained by the solid-state combustion method. Complexes with a varying number of ethylenediamine molecules in the coordination sphere of nickel were chosen as the precursors of the active component of the catalysts. Their synthesis was carried out without the use of solvents, which made it possible to avoid the stages of their separation from the solution and the utilization of waste liquids. The composition and structure of the synthesized complexes were confirmed by elemental analysis, IR spectroscopy, powder XRD and XPS methods. It was determined that their thermal decomposition in the combustion wave proceeds in multiple stages with the formation of NiO and Ni(OH)2, which are reduced to Ni0. Higher ethylenediamine content in the complex leads to a higher content of metal in the solid products of combustion. However, different ratios of oxidized and reduced forms of nickel do not affect the initial activation temperature of nickel catalysts in the presence of CO2. It was noted that, after activation, the sample obtained from [Ni(C2H8N2)2](NO3)2 exhibited the highest activity in CO2 methanation. Thus, this complex is a promising precursor for CO2 methanation catalysts, and its synthesis requires only a small amount of ethylenediamine.

5.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903101

RESUMO

A new method for the synthesis of boron-doped carbon nanomaterial (B-carbon nanomaterial) has been developed. First, graphene was synthesized using the template method. Magnesium oxide was used as the template that was dissolved with hydrochloric acid after the graphene deposition on its surface. The specific surface area of the synthesized graphene was equal to 1300 m2/g. The suggested method includes the graphene synthesis via the template method, followed by the deposition of an additional graphene layer doped with boron in an autoclave at 650 °C, using a mixture of phenylboronic acid, acetone, and ethanol. After this carbonization procedure, the mass of the graphene sample increased by 70%. The properties of B-carbon nanomaterial were studied using X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and adsorption-desorption techniques. The deposition of an additional graphene layer doped with boron led to an increase of the graphene layer thickness from 2-4 to 3-8 monolayers, and a decrease of the specific surface area from 1300 to 800 m2/g. The boron concentration in B-carbon nanomaterial determined by different physical methods was about 4 wt.%.

6.
Nanomaterials (Basel) ; 14(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38202512

RESUMO

Bimetallic nanoparticles expand the possibilities of catalyst design, providing an extra degree of freedom for tailoring the catalyst structure in comparison to purely monometallic systems. The distribution mode of two metal species defines the structure of surface catalytic sites, and current research efforts are focused on the development of methods for their controlled tuning. In light of this, a comprehensive investigation of the factors which influence the changes in the morphology of bimetallic nanoparticles, including the elemental redistribution, are mandatory for each particular bimetallic system. Here we present the combined XPS/STM study of the surface structure and morphology of bimetallic Pt-Au/HOPG nanoparticles prepared by thermal vacuum deposition and show that thermal annealing up to 350 °C induces the alloying process between the two bulk-immiscible metal components. Increasing the treatment temperature enhances the extent of Pt-Au alloying. However, the sintering of nanoparticles starts to occur above 500 °C. The approach implemented in this work includes the theoretical simulation of XPS signal intensities for a more meticulous analysis of the compositional distribution and can be helpful from a methodological perspective for other XPS/STM studies of bimetallic nanoparticles on planar supports.

7.
Catal Sci Technol ; 12(12): 3957-3968, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35814525

RESUMO

This work explores how H2 pretreatment at 550 °C induces structural transformation of two gallia-based propane dehydrogenation (PDH) catalysts, viz. nanocrystalline γ/ß-Ga2O3 and amorphous Ga2O3 (GaO x ) supported on silica (γ-Ga2O3/SiO2 and Ga/SiO2, respectively) and how it affects their activity, propene selectivity and stability with time on stream (TOS). Ga/SiO2-H2 shows poor activity and propene selectivity, no coking and no deactivation with TOS, similar to Ga/SiO2. In contrast, the high initial activity and propene selectivity of γ-Ga2O3/SiO2-H2 decline with TOS but to a lesser extent than in calcined γ-Ga2O3/SiO2. In addition, γ-Ga2O3/SiO2-H2 cokes less than γ-Ga2O3/SiO2. Ga K-edge X-ray absorption spectroscopy suggests an increased disorder of the nanocrystalline γ/ß-Ga2O3 phases in γ-Ga2O3/SiO2-H2 and the emergence of additional tetrahedral Ga sites (GaIV). Such GaIV sites are strong Lewis acid sites (LAS) according to studies using adsorbed pyridine and CO probe molecules, i.e., the abundance of strong LAS is higher in γ-Ga2O3/SiO2-H2 compared to γ-Ga2O3/SiO2 but lower than in Ga/SiO2 and Ga/SiO2-H2. Dissociation of H2 on the Ga-O linkages in γ-Ga2O3/SiO2-H2 yields high-frequency Ga-H bands that are observed in Ga/SiO2 and Ga/SiO2-H2 but not detected in γ-Ga2O3/SiO2. We attribute the increased amount of GaIV sites in γ-Ga2O3/SiO2-H2 mostly to an increased disorder in γ/ß-Ga2O3. X-ray photoelectron spectroscopy detects the formation of Ga+ and Ga0 species in both Ga/SiO2-H2 and γ-Ga2O3/SiO2-H2. Therefore, it is likely that a minor amount of GaIV sites also forms through the interaction of Ga+ (such as Ga2O) and/or Ga0 with silanol groups of SiO2.

8.
Materials (Basel) ; 15(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35591346

RESUMO

Magnetically recovered Co and Co@Pt catalysts for H2 generation during NaBH4 hydrolysis were successfully synthesized by optimizing the conditions of galvanic replacement method. Commercial aluminum particles with an average size of 80 µm were used as a template for the synthesis of hollow shells of metallic cobalt. Prepared Co0 was also subjected to galvanic replacement reaction to deposit a Pt layer. X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, and elemental analysis were used to investigate catalysts at each stage of their synthesis and after catalytic tests. It was established that Co0 hollow microshells show a high hydrogen-generation rate of 1560 mL·min-1·gcat-1 at 40 °C, comparable to that of many magnetic cobalt nanocatalysts. The modification of their surface by platinum (up to 19 at% Pt) linearly increases the catalytic activity up to 5.2 times. The catalysts prepared by the galvanic replacement method are highly stable during cycling. Thus, after recycling and washing off the resulting borate layer, the Co@Pt catalyst with a minimum Pt loading (0.2 at%) exhibits an increase in activity of 34% compared to the initial value. The study shows the activation of the catalyst in the reaction medium with the formation of cobalt-boron-containing active phases.

9.
Nanomaterials (Basel) ; 11(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34947641

RESUMO

In this study, the dependence of the catalytic activity of highly oriented pyrolytic graphite (HOPG)-supported bimetallic Pd-Au catalysts towards the CO oxidation based on the Pd/Au atomic ratio was investigated. The activities of two model catalysts differing from each other in the initial Pd/Au atomic ratios appeared as distinctly different in terms of their ignition temperatures. More specifically, the PdAu-2 sample with a lower Pd/Au surface ratio (~0.75) was already active at temperatures less than 150 °C, while the PdAu-1 sample with a higher Pd/Au surface ratio (~1.0) became active only at temperatures above 200 °C. NAP XPS revealed that the exposure of the catalysts to a reaction mixture at RT induces the palladium surface segregation accompanied by an enrichment of the near-surface regions of the two-component Pd-Au alloy nanoparticles with Pd due to adsorption of CO on palladium atoms. The segregation extent depends on the initial Pd/Au surface ratio. The difference in activity between these two catalysts is determined by the presence or higher concentration of specific active Pd sites on the surface of bimetallic particles, i.e., by the ensemble effect. Upon cooling the sample down to room temperature, the reverse redistribution of the atomic composition within near-surface regions occurs, which switches the catalyst back into inactive state. This observation strongly suggests that the optimum active sites emerge under reaction conditions exclusively, involving both high temperature and a reactive atmosphere.

10.
Nanotechnology ; 31(50): 505704, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33021224

RESUMO

THe memristor is a key memory element for neuromorphic electronics and new generation flash memories. One of the most promising materials for memristor technology is silicon oxide SiO x , which is compatible with silicon-based technology. In this paper, the electronic structure and charge transport mechanism in a forming-free SiO x -based memristor fabricated with the plasma enhanced chemical vapor deposition method is investigated. The experimental current-voltage characteristics measured at different temperatures in high-resistance, low-resistance and intermediate states are compared with various charge transport theories. The charge transport in all states is limited by the space charge-limited current model. The trap parameters, responsible for the charge transport in a SiO x -based memristor in different states, are determined.

11.
Nanotechnology ; 29(42): 425202, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30020078

RESUMO

The atomic and electronic structure of nonstoichiometric amorphous tantalum oxide (TaO x ) films of different composition has been investigated by means of electron microscopy, x-ray photoelectron spectroscopy, Raman and infrared spectroscopy. The dispersion of the absorption coefficient and refraction index has been studied by spectral ellipsometry. The optical spectra were interpreted using the results of a quantum-chemical simulation for crystalline orthorhombic TaO x . It was found that the presence of oxygen vacancies in the oxygen-deficient TaO x film show an optical absorption peak at 4.6 eV. It has been established that TaO x consists of stoichiometric Ta2O5, metallic Ta clusters less than 20 nm in size, and tantalum suboxides TaO y (y < 2.5). The model of nanoscale potential fluctuations of TaO x bandgap in the range of 0-4.2 eV is proposed and justified. The design of the flash memory element based on the effect of localization of electrons and holes in Ta metallic nanoclusters in the TaO x matrix is proposed.

12.
ACS Appl Mater Interfaces ; 10(4): 3769-3775, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29308879

RESUMO

Optical and transport properties of nonstoichiometric tantalum oxide thin films grown by ion beam deposition were investigated in order to understand the dominant charge transport mechanisms and reveal the nature of traps. The TaOx films composition was analyzed by X-ray photoelectron spectroscopy and by quantum-chemistry simulation. From the optical absorption and photoluminescence measurements and density functional theory simulations, it was concluded that the 2.75 eV blue luminescence excited in a TaOx by 4.45 eV photons, originates from oxygen vacancies. These vacancies are also responsible for TaOx conductivity. The thermal trap energy of 0.85 eV determined from the transport experiments coincides with the half of the Stokes shift of the blue luminescence band. It is argued that the dominant charge transport mechanism in TaOx films is phonon-assisted tunneling between the traps.

13.
Chemistry ; 24(11): 2547-2553, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29322571

RESUMO

Pd-In/Al2 O3 single-site catalyst was able to show high selectivity (up to 98 %) in the gas phase semihydrogenation of propyne. Formation of intermetallic Pd-In compound was studied by XPS during reduction of the catalyst. FTIR-CO spectroscopy confirmed single-site nature of the intermetallic Pd-In phase reduced at high temperature. Utilization of Pd-In/Al2 O3 in semihydrogenation of propyne with parahydrogen allowed to produce ≈3400-fold NMR signal enhancement for reaction product propene (polarization=9.3 %), demonstrating the large contribution of pairwise hydrogen addition route. Significant signal enhancement as well as the high catalytic activity of the Pd-In catalyst allowed to acquire 1 H MR images of flowing hyperpolarized propene gas selectively for protons in CH, CH2 and CH3 groups. This observation is unique and can be easily transferred to the development of a useful MRI technique for an in situ investigation of selective semihydrogenation in catalytic reactors.

14.
Chemistry ; 22(46): 16446-16449, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27607402

RESUMO

A supported metal catalyst was designed, characterized, and tested for aqueous phase heterogeneous hydrogenation of vinyl acetate with parahydrogen to produce 13 C-hyperpolarized ethyl acetate for potential biomedical applications. The Rh/TiO2 catalyst with a metal loading of 23.2 wt % produced strongly hyperpolarized 13 C-enriched ethyl acetate-1-13 C detected at 9.4 T. An approximately 14-fold 13 C signal enhancement was detected using circa 50 % parahydrogen gas without taking into account relaxation losses before and after polarization transfer by magnetic field cycling from nascent parahydrogen-derived protons to 13 C nuclei. This first observation of 13 C PHIP-hyperpolarized products over a supported metal catalyst in an aqueous medium opens up new possibilities for production of catalyst-free aqueous solutions of nontoxic hyperpolarized contrast agents for a wide range of biomolecules amenable to the parahydrogen induced polarization by side arm hydrogenation (PHIP-SAH) approach.

15.
Chemistry ; 20(37): 11636-9, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-24961814

RESUMO

Several supported metal catalysts were synthesized, characterized, and tested in heterogeneous hydrogenation of propene with parahydrogen to maximize nuclear spin hyperpolarization of propane gas using parahydrogen induced polarization (PHIP). The Rh/TiO2 catalyst with a metal particle size of 1.6 nm was found to be the most active and effective in the pairwise hydrogen addition and robust, demonstrating reproducible results with multiple hydrogenation experiments and stability for ≥1.5 years. 3D (1) H magnetic resonance imaging (MRI) of 1 % hyperpolarized flowing gas with microscale spatial resolution (625×625×625 µm(3) ) and large imaging matrix (128×128×32) was demonstrated by using a preclinical 4.7 T scanner and 17.4 s imaging scan time.


Assuntos
Hidrogênio/química , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Ródio/química , Titânio/química , Catálise , Gases , Espectroscopia de Ressonância Magnética , Prótons
16.
Chem Commun (Camb) ; 50(7): 875-8, 2014 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-24298559

RESUMO

The results show that, in general, observation of PHIP effects on metals does not require the presence of a support. In addition, certain metal oxides can produce PHIP effects in the absence of a supported metal. The new promising catalysts for producing PHIP heterogeneously have been identified.

17.
J Phys Chem B ; 109(12): 5728-38, 2005 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16851621

RESUMO

Nanostructured doped ceria is a prospective material for catalytic applications such as the construction of membranes with mixed electronic and ionic conductivity for effective syngas production. In this article, the surface properties of nanostructured ceria doped with praseodymium have been studied by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and Fourier transform infrared spectroscopy of adsorbed carbon monoxide. The effects of supporting 1.4 wt % Pt as well as structural changes upon the reduction of the samples with methane have been investigated. While in samples without supported platinum, mainly praseodymium cations are reduced in a methane atmosphere; stronger reduction of cerium cations was found in the case of surface modification with Pt. The structural differences correlate with results from temperature-programmed reaction experiments with methane. Explanations are discussed in terms of different reaction mechanisms.

18.
J Phys Chem B ; 109(43): 20077-86, 2005 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16853596

RESUMO

Nanostructured ceria doped with other rare earth elements is a good oxygen ion conductor, which gives rise to various catalytic applications such as the construction of membranes for syngas production by partial oxidation of methane. This article focuses on the Gd-doped cerium dioxides, which can be modified with Pt or Pd to enhance the reactivity of the lattice oxygen in interaction with methane. The aim of the work is the elucidation of correlations between the structural, electronic, and chemical properties of these nanomaterials. Detailed studies were performed for a series of samples with and without surface modification by noble metals using a complex combination of physicochemical methods: XRD, TEM, CH(4) TPR, XPS, SIMS, and FTIR spectroscopy of adsorbed CO. XPS and TPR data revealed that surface modification with noble metals enhances the reducibility of the doped ceria support, where the effect is more pronounced for Pd than for Pt. The formation of highly cationic Pd species due to strong metal support interactions provides a possible explanation for this behavior. Furthermore, the results obtained in the present work for the Gd-doped ceria system are compared to those obtained previously for the Pr-doped ceria system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...