Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 880: 163178, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37023812

RESUMO

Excess nutrients from agricultural and urban development have created a cascade of ecological crises around the globe. Nutrient pollution has triggered eutrophication in most freshwater and coastal ecosystems, contributing to a loss in biodiversity, harm to human health, and trillions in economic damage every year. Much of the research conducted on nutrient transport and retention has focused on surface environments, which are both easy to access and biologically active. However, surface characteristics of watersheds, such as land use and network configuration, often do not explain the variation in nutrient retention observed in rivers, lakes, and estuaries. Recent research suggests subsurface processes and characteristics may be more important than previously thought in determining watershed-level nutrient fluxes and removal. In a small watershed in western France, we used a multi-tracer approach to compare surface and subsurface nitrate dynamics at commensurate spatiotemporal scales. We combined 3-D hydrological modeling with a rich biogeochemical dataset from 20 wells and 15 stream locations. Water chemistry in the surface and subsurface showed high temporal variability, but groundwater was substantially more spatially variable, attributable to long transport times (10-60 years) and patchy distribution of the iron and sulfur electron donors fueling autotrophic denitrification. Isotopes of nitrate and sulfate revealed fundamentally different processes dominating the surface (heterotrophic denitrification and sulfate reduction) and subsurface (autotrophic denitrification and sulfate production). Agricultural land use was associated with elevated nitrate in surface water, but subsurface nitrate concentration was decoupled from land use. Dissolved silica and sulfate are affordable tracers of residence time and nitrogen removal that are relatively stable in surface and subsurface environments. Together, these findings reveal distinct but adjacent and connected biogeochemical worlds in the surface and subsurface. Characterizing how these worlds are linked and decoupled is critical to meeting water quality targets and addressing water issues in the Anthropocene.


Assuntos
Água Subterrânea , Rios , Humanos , Rios/química , Ecossistema , Desnitrificação , Nitratos/análise , Monitoramento Ambiental , Nitrogênio/química
2.
Environ Microbiol ; 24(12): 5690-5706, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273269

RESUMO

In Arctic catchments, bacterioplankton are dispersed through soils and streams, both of which freeze and thaw/flow in phase, seasonally. To characterize this dispersal and its potential impact on biogeochemistry, we collected bacterioplankton and measured stream physicochemistry during snowmelt and after vegetation senescence across multiple stream orders in alpine, tundra, and tundra-dominated-by-lakes catchments. In all catchments, differences in community composition were associated with seasonal thaw, then attachment status (i.e. free floating or sediment associated), and then stream order. Bacterioplankton taxonomic diversity and richness were elevated in sediment-associated fractions and in higher-order reaches during snowmelt. Families Chthonomonadaceae, Pyrinomonadaceae, and Xiphinematobacteraceae were abundantly different across seasons, while Flavobacteriaceae and Microscillaceae were abundantly different between free-floating and sediment-associated fractions. Physicochemical data suggested there was high iron (Fe+ ) production (alpine catchment); Fe+ production and chloride (Cl- ) removal (tundra catchment); and phosphorus (SRP) removal and ammonium (NH4 + ) production (lake catchment). In tundra landscapes, these 'hot spots' of Fe+ production and Cl- removal accompanied shifts in species richness, while SRP promoted the antecedent community. Our findings suggest that freshet increases bacterial dispersal from headwater catchments to receiving catchments, where bacterioplankton-mineral relations stabilized communities in free-flowing reaches, but bacterioplankton-nutrient relations stabilized those punctuated by lakes.


Assuntos
Lagos , Plâncton , Humanos , Regiões Árticas , Lagos/química , Bactérias/genética , Fósforo , Organismos Aquáticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...