Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 12(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36291209

RESUMO

This Brain Sciences 2020 Special Issue of nine manuscripts contribute novel data on treatment updates in fragile X syndrome (FXS) [...].

2.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216055

RESUMO

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the full mutation as well as highly localized methylation of the fragile X mental retardation 1 (FMR1) gene on the long arm of the X chromosome. Children with FXS are commonly co-diagnosed with Autism Spectrum Disorder, attention and learning problems, anxiety, aggressive behavior and sleep disorder, and early interventions have improved many behavior symptoms associated with FXS. In this review, we performed a literature search of original and review articles data of clinical trials and book chapters using MEDLINE (1990-2021) and ClinicalTrials.gov. While we have reviewed the biological importance of the fragile X mental retardation protein (FMRP), the FXS phenotype, and current diagnosis techniques, the emphasis of this review is on clinical interventions. Early non-pharmacological interventions in combination with pharmacotherapy and targeted treatments aiming to reverse dysregulated brain pathways are the mainstream of treatment in FXS. Overall, early diagnosis and interventions are fundamental to achieve optimal clinical outcomes in FXS.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Animais , Encéfalo/patologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/patologia , Humanos , Fenótipo
3.
Am J Med Genet A ; 188(4): 1029-1039, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34889523

RESUMO

Fragile X syndrome (FXS), the leading cause of inherited intellectual disability and autism spectrum disorder, is associated with multiple neurobehavioral abnormalities including sleep difficulties. Nonetheless, frequency, severity, and consequences of sleep problems are still unclear. The Fragile X Online Registry with Accessible Research Database (FORWARD-version-3), including Clinician Report and Parent Report forms, was analyzed for frequency, severity, relationship with behavioral problems, and impact of sleep difficulties in a mainly pediatric cohort. A focused evaluation of sleep apnea was also conducted. Six surveyed sleep difficulties were moderately frequent (~23%-46%), relatively mild, affected predominantly younger males, and considered a problem for 7%-20% of families. Snoring was more prevalent in older individuals. All sleep difficulties were associated with irritability/aggression and most also to hyperactivity. Only severe snoring was correlated with sleep apnea (loud snoring: 30%; sleep apnea: 2%-3%). Sleep difficulties are prevalent in children with FXS and, although they tend to be mild, they are associated with behavioral problems and negative impact to families. Because of its cross-sectional nature, clinic-origin, use of ad hoc data collection forms, and lack of treatment data, the present study should be considered foundational for future research aiming at better recognition and management of sleep problems in FXS.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Síndromes da Apneia do Sono , Idoso , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/genética , Criança , Estudos Transversais , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/epidemiologia , Síndrome do Cromossomo X Frágil/genética , Humanos , Masculino , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/epidemiologia , Ronco/complicações , Ronco/epidemiologia
4.
Brain Sci ; 10(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008014

RESUMO

Fragile X syndrome (FXS) is caused by silencing of the FMR1 gene, which encodes a protein with a critical role in synaptic plasticity. The molecular abnormality underlying FMR1 silencing, CGG repeat expansion, is well characterized; however, delineation of the pathway from DNA to RNA to protein using biosamples from well characterized patients with FXS is limited. Since FXS is a common and prototypical genetic disorder associated with intellectual disability (ID) and autism spectrum disorder (ASD), a comprehensive assessment of the FMR1 DNA-RNA-protein pathway and its correlations with the neurobehavioral phenotype is a priority. We applied nine sensitive and quantitative assays evaluating FMR1 DNA, RNA, and FMRP parameters to a reference set of cell lines representing the range of FMR1 expansions. We then used the most informative of these assays on blood and buccal specimens from cohorts of patients with different FMR1 expansions, with emphasis on those with FXS (N = 42 total, N = 31 with FMRP measurements). The group with FMRP data was also evaluated comprehensively in terms of its neurobehavioral profile, which allowed molecular-neurobehavioral correlations. FMR1 CGG repeat expansions, methylation levels, and FMRP levels, in both cell lines and blood samples, were consistent with findings of previous FMR1 genomic and protein studies. They also demonstrated a high level of agreement between blood and buccal specimens. These assays further corroborated previous reports of the relatively high prevalence of methylation mosaicism (slightly over 50% of the samples). Molecular-neurobehavioral correlations confirmed the inverse relationship between overall severity of the FXS phenotype and decrease in FMRP levels (N = 26 males, mean 4.2 ± 3.3 pg FMRP/ng genomic DNA). Other intriguing findings included a significant relationship between the diagnosis of FXS with ASD and two-fold lower levels of FMRP (mean 2.8 ± 1.3 pg FMRP/ng genomic DNA, p = 0.04), in particular observed in younger age- and IQ-adjusted males (mean age 6.9 ± 0.9 years with mean 3.2 ± 1.2 pg FMRP/ng genomic DNA, 57% with severe ASD), compared to FXS without ASD. Those with severe ID had even lower FMRP levels independent of ASD status in the male-only subset. The results underscore the link between FMR1 expansion, gene methylation, and FMRP deficit. The association between FMRP deficiency and overall severity of the neurobehavioral phenotype invites follow up studies in larger patient cohorts. They would be valuable to confirm and potentially extend our initial findings of the relationship between ASD and other neurobehavioral features and the magnitude of FMRP deficit. Molecular profiling of individuals with FXS may have important implications in research and clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...