Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20674, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001253

RESUMO

How the human brain represents millisecond unit of time is far from clear. A recent neuroimaging study revealed the existence in the human premotor cortex of a topographic representation of time i.e., neuronal units selectively responsive to specific durations and topographically organized on the cortical surface. By using high resolution functional Magnetic Resonance Images here, we go beyond this previous work, showing duration preferences across a wide network of cortical and subcortical brain areas: from cerebellum to primary visual, parietal, premotor and prefrontal cortices. Most importantly, we identify the effective connectivity structure between these different brain areas and their duration selective neural units. The results highlight the role of the cerebellum as the network hub and that of medial premotor cortex as the final stage of duration recognition. Interestingly, when a specific duration is presented, only the communication strength between the units selective to that specific duration and to the neighboring durations is affected. These findings link for the first time, duration preferences within single brain region with connectivity dynamics between regions, suggesting a communication mode that is partially duration specific.


Assuntos
Mapeamento Encefálico , Cerebelo , Humanos , Cerebelo/fisiologia , Encéfalo , Córtex Pré-Frontal , Imageamento por Ressonância Magnética/métodos , Vias Neurais/fisiologia
2.
PLoS Biol ; 17(3): e3000026, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30897088

RESUMO

Time is a fundamental dimension of everyday experiences. We can unmistakably sense its passage and adjust our behavior accordingly. Despite its ubiquity, the neuronal mechanisms underlying the capacity to perceive time remains unclear. Here, in two experiments using ultrahigh-field 7-Tesla (7T) functional magnetic resonance imaging (fMRI), we show that in the medial premotor cortex (supplementary motor area [SMA]) of the human brain, neural units tuned to different durations are orderly mapped in contiguous portions of the cortical surface so as to form chronomaps. The response of each portion in a chronomap is enhanced by neighboring durations and suppressed by nonpreferred durations represented in distant portions of the map. These findings suggest duration-sensitive tuning as a possible neural mechanism underlying the recognition of time and demonstrate, for the first time, that the representation of an abstract feature such as time can be instantiated by a topographical arrangement of duration-sensitive neural populations.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
3.
Cogn Neurodyn ; 10(2): 99-111, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27066148

RESUMO

Using spectral Granger causality (GC) we identified distinct spatio-temporal causal connectivity (CC) patterns in groups of control and epileptic children during the execution of a one-back matching visual discrimination working memory task. Differences between control and epileptic groups were determined for both GO and NOGO conditions. The analysis was performed on a set of 19-channel EEG cortical activity signals. We show that for the GO task, the highest brain activity in terms of the density of the CC networks is observed in α band for the control group while for the epileptic group the CC network seems disrupted as reflected by the small number of connections. For the NOGO task, the denser CC network was observed in θ band for the control group while widespread differences between the control and the epileptic group were located bilaterally at the left temporal-midline and parietal areas. In order to test the discriminative power of our analysis, we performed a pattern analysis approach based on fuzzy classification techniques. The performance of the classification scheme was evaluated using permutation tests. The analysis demonstrated that, on average, 87.6 % of the subjects were correctly classified in control and epileptic. Thus, our findings may provide a helpful insight on the mechanisms pertaining to the cognitive response of children with well controlled epilepsy and could potentially serve as "functional" biomarkers for early diagnosis.

4.
Front Comput Neurosci ; 8: 146, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25431557

RESUMO

We employed spectral Granger causality analysis on a full set of 56 electroencephalographic recordings acquired during the execution of either a 2D movement pointing or a perceptual (yes/no) change detection task with memory and non-memory conditions. On the basis of network characteristics across frequency bands, we provide evidence for the full dissociation of the corresponding cognitive processes. Movement-memory trial types exhibited higher degree nodes during the first 2 s of the delay period, mainly at central, left frontal and right-parietal areas. Change detection-memory trial types resulted in a three-peak temporal pattern of the total degree with higher degree nodes emerging mainly at central, right frontal, and occipital areas. Functional connectivity networks resulting from non-memory trial types were characterized by more sparse structures for both tasks. The movement-memory trial types encompassed an apparent coarse flow from frontal to parietal areas while the opposite flow from occipital, parietal to central and frontal areas was evident for the change detection-memory trial types. The differences among tasks and conditions were more profound in α (8-12 Hz) and ß (12-30 Hz) and less in γ (30-45 Hz) band. Our results favor the hypothesis which considers spatial working memory as a by-product of specific mental processes that engages common brain areas under different network organizations.

5.
Exp Brain Res ; 232(2): 659-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24281356

RESUMO

This study investigated the question whether spatial working memory related to movement plans (motor working memory) and spatial working memory related to spatial attention and perceptual processes (perceptual spatial working memory) share the same neurophysiological substrate or there is evidence for separate motor and perceptual working memory streams of processing. Towards this aim, ten healthy human subjects performed delayed responses to visual targets presented at different spatial locations. Two tasks were attained, one in which the spatial location of the target was the goal for a pointing movement and one in which the spatial location of the target was used for a perceptual (yes or no) change detection. Each task involved two conditions: a memory condition in which the target remained visible only for the first 250 ms of the delay period and a delay condition in which the target location remained visible throughout the delay period. The amplitude spectrum analysis of the EEG revealed that the alpha (8-12 Hz) band signal was smaller, while the beta (13-30 Hz) and gamma (30-45 Hz) band signals were larger in the memory compared to the non-memory condition. The alpha band signal difference was confined to the frontal midline area; the beta band signal difference extended over the right hemisphere and midline central area, and the gamma band signal difference was confined to the right occipitoparietal area. Importantly, both in beta and gamma bands, we observed a significant increase in the movement-related compared to the perceptual-related memory-specific amplitude spectrum signal in the central midline area. This result provides clear evidence for the dissociation of motor and perceptual spatial working memory.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Movimento/fisiologia , Percepção Espacial/fisiologia , Adulto , Análise de Variância , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Masculino , Estimulação Luminosa , Tempo de Reação/fisiologia , Análise Espectral
6.
Artigo em Inglês | MEDLINE | ID: mdl-22255681

RESUMO

We analysed multi-channel electroencephalographic (EEG) recordings during a spatial Working Memory (WM) task in order to test the hypothesis that segmentation of perception and action is present when the visual stimulus has been stored in spatial WM. To detect the interactions between different regions of the brain depending on the task we employed both Short Time Fourier Transformation (STFT) and the concept of Granger Causality (GC). Our computational analysis supports evidence that the Parietal Cortex (PC) is involved in WM processing.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Tomada de Decisões/fisiologia , Eletroencefalografia/métodos , Intenção , Memória de Curto Prazo/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Adulto , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...