Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1274082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023141

RESUMO

Purpose: The aim of this study was to assess the feasibility of online adaptive radiotherapy with Ethos for breast cancer. Materials and methods: This retrospective study included 20 breast cancer patients previously treated with TrueBeam. All had undergone breast surgery for different indications (right/left, lumpectomy/mastectomy) and were evenly divided between these four cases, with five extended cone beam computed tomography (CBCT) scans per patient. The dataset was used in an Ethos emulator to test the full adaptive workflow. The contours generated by artificial intelligence (AI) for the influencers (left and right breasts and lungs, heart) and elastic or rigid propagation for the target volumes (internal mammary chain (IMC) and clavicular lymph nodes (CLNs)) were compared to the initial contours delineated by the physician using two metrics: Dice similarity coefficient (DICE) and Hausdorff 95% distance (HD95). The repeatability of influencer generation was investigated. The times taken by the emulator to generate contours, optimize plans, and calculate doses were recorded. The quality of the scheduled and adapted plans generated by Ethos was assessed using planning target volume (PTV) coverage, homogeneity indices (HIs), and doses to organs at risk (OARs) via dose-volume histogram (DVH) metrics. Quality assurance (QA) of the treatment plans was performed using an independent portal dosimetry tool (EpiQA) and gamma index. Results: On average, the DICE for the influencers was greater than 0.9. Contours resulting from rigid propagation had a higher DICE and a lower HD95 than those resulting from elastic deformation but remained below the values obtained for the influencers: DICE values were 0.79 ± 0.11 and 0.46 ± 0.17 for the CLN and IMC, respectively. Regarding the repeatability of the influencer segmentation, the DICE was close to 1, and the mean HD95 was strictly less than 0.15 mm. The mean time was 73 ± 4 s for contour generation per AI and 80 ± 9 s for propagations. The average time was 53 ± 3 s for dose calculation and 125 ± 9 s for plan optimization. A dosimetric comparison of scheduled and adapted plans showed a significant difference in PTV coverage: dose received by 95% of the volume (D95%) values were higher and closer to the prescribed doses for adapted plans. Doses to organs at risk were similar. The average gamma index for quality assurance of adapted plans was 99.93 ± 0.38 for a 3%/3mm criterion. Conclusion: This study comprehensively evaluated the Ethos® adaptive workflow for breast cancer and its potential technical limitations. Although the results demonstrated the high accuracy of AI segmentation and the superiority of adapted plans in terms of target volume coverage, a medical assessment is still required.

2.
Front Oncol ; 13: 1245054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023165

RESUMO

Purpose/objectives: An artificial intelligence-based pseudo-CT from low-field MR images is proposed and clinically evaluated to unlock the full potential of MRI-guided adaptive radiotherapy for pelvic cancer care. Materials and method: In collaboration with TheraPanacea (TheraPanacea, Paris, France) a pseudo-CT AI-model was generated using end-to-end ensembled self-supervised GANs endowed with cycle consistency using data from 350 pairs of weakly aligned data of pelvis planning CTs and TrueFisp-(0.35T)MRIs. The image accuracy of the generated pCT were evaluated using a retrospective cohort involving 20 test cases coming from eight different institutions (US: 2, EU: 5, AS: 1) and different CT vendors. Reconstruction performance was assessed using the organs at risk used for treatment. Concerning the dosimetric evaluation, twenty-nine prostate cancer patients treated on the low field MR-Linac (ViewRay) at Montpellier Cancer Institute were selected. Planning CTs were non-rigidly registered to the MRIs for each patient. Treatment plans were optimized on the planning CT with a clinical TPS fulfilling all clinical criteria and recalculated on the warped CT (wCT) and the pCT. Three different algorithms were used: AAA, AcurosXB and MonteCarlo. Dose distributions were compared using the global gamma passing rates and dose metrics. Results: The observed average scaled (between maximum and minimum HU values of the CT) difference between the pCT and the planning CT was 33.20 with significant discrepancies across organs. Femoral heads were the most reliably reconstructed (4.51 and 4.77) while anal canal and rectum were the less precise ones (63.08 and 53.13). Mean gamma passing rates for 1%1mm, 2%/2mm, and 3%/3mm tolerance criteria and 10% threshold were greater than 96%, 99% and 99%, respectively, regardless the algorithm used. Dose metrics analysis showed a good agreement between the pCT and the wCT. The mean relative difference were within 1% for the target volumes (CTV and PTV) and 2% for the OARs. Conclusion: This study demonstrated the feasibility of generating clinically acceptable an artificial intelligence-based pseudo CT for low field MR in pelvis with consistent image accuracy and dosimetric results.

3.
Rep Pract Oncol Radiother ; 28(2): 304-307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456696

RESUMO

Background: The aim of this study was to describe the clinical implementation of the Calypso system with its potential impact on the treatment delivery. Materials and methods: The influence of the electromagnetic array was investigated on the kilovoltage cone beam computed tomography (kV-CBCT) image quality using the CATPHAN 504 CBCT images. Then, the QFix kVue Calypso couch top and the array attenuation, and their dosimetric influence on the Volumetric modulated arc therapy (VMAT) treatments of prostate was evaluated. Results: Regarding the image quality, a significant increase of noise (p < 0.01) was detected with the array in place, resulting in a significant decrease in signal noise ratio (SNR) (p < 0.01). No difference in absolute contrast was observed. Finally, there was a significant decrease in contrast noise ratio (CNR) (p < 0.01) even if the deviation was only of 2.5%. For the dosimetric evaluation, the maximum attenuation of the couch was 12.02% and 13.19% for X6 and X6 flattening filter free (FFF), respectively (configuration of rails out). Besides, the mean attenuation of the array was 1.15% and 1.67% for X6 and X6 FFF, respectively. For the VMAT treatment plans, the mean dose was reduced by 0.61% for X6 and by 0.31% for X6 FFF beams when using the electromagnetic array. Conclusions: The Calypso system does not affect significantly the kV-CBCT image quality and the VMAT plan dose distribution.

4.
J Clin Med ; 12(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36769509

RESUMO

In our hospital, a TrueBeam linear accelerator and the PerfectPitch 6-degrees-of-freedom (6-DOF) couch (Varian), with 7 mm margins, are used for volumetric modulated arc therapy (VMAT) of breast cancer (BC). This study tested whether a 3-degrees-of-freedom (3-DOF) couch, i.e., without rotation compensation (such as the Halcyon couch), affected dose metrics. A total of 446 daily extended cone beam computed tomography (CBCT) data of 20 patients who received VMAT for BC were used to recalculate the treatment plans with the session registration (6-DOF) and a simulated matching with 3-DOF. The initial plan provided significantly better coverage for internal mammary chain and clavicular lymph node clinical target volumes (CTVs) than the 6-DOF and 3-DOF CBCT plans. The volumes receiving 110% of the prescribed dose (V110%) were increased for all CTVs with the 6-DOF and 3-DOF CBCT plans, but the difference was significant only for the breast/chest wall CTV (p < 0.05; paired samples t-test). Protection of the heart and lungs was comparable among plans. The dose volume histograms based on the 6-DOF and 3-DOF data were similar for CTVs and organs at risk. Therefore, with a 7 mm margin, VMAT and a 3-DOF couch can be used for BC treatment without any compromise in delivery accuracy.

5.
Front Oncol ; 12: 967479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059658

RESUMO

Purpose: Volumetric Modulated Arc Therapy (VMAT) exhibits potent advantages regarding target volume coverage and protection of organs at risk, notably in the context of anatomical constraints. Nevertheless, reports concerning VMAT for the treatment of synchronous bilateral breast cancers (SBBC) have been scarce to date. As such, we conducted this observational study to assess efficacy, safety and feasibility of VMAT in SBBC. Materials and Methods: From August 2011 to December 2017, 54 consecutive patients with SBBC with or without axillary nodes involvement underwent a treatment protocol containing radiotherapy using VMAT. A total dose (TD) of 52.2Gy in 29 fractions was delivered to breast and internal mammary chain (IMC) nodes Planning Target Volume (PTV) plus, if applicable, a TD of 49.3Gy in 29 fractions to the supra- and infra-clavicular nodes PTV and a TD of 63.22Gy in 29 fractions to tumor boost PTV. Lungs, heart, esophagus, trachea, liver, thyroid and spinal cord were considered as organs at risk. VMAT feasibility and organ at risk sparing were evaluated by treatments planning of the 20 first enrolled patients. Tolerance and patients' outcome were prospectively monitored by acute/late toxicities records and by the analysis of overall survival (OS), locoregional recurrence-free survival (LRFS) and recurrence-free survival (RFS). Results: Breast, supraclavicular nodes and boost PTV coverage was adequate with at least 98% of PTV encompassed by more than 95% of the prescribed dose. Less than 90% of IMC PTV was encompassed by 95% of the prescribed dose. Mean lung dose was 12.3Gy (range: 7.7 - 18.7); mean heart dose was 10.7Gy (range: 6.2 - 22.3). Concerning acute toxicities, only 2 patients experienced grade 3 skin toxicity (3.7%) and only 1 patient developed grade 1 pneumonitis. After a median follow-up of 5.3 years, grade 2 fibrosis and/or shrinking was observed in 5 patients (10%), and grade 3 fibrosis in 1 patients (2%). The 5-year LRFS-rate, RFS-rate and OS were 98% [95% CI= 86.12-99.70%], 96% [95% CI= 84.63-98.96%] and 100%, respectively.

6.
Front Oncol ; 12: 1066915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36727074

RESUMO

Background: Previous studies in 2D and in 3D conformal radiotherapy concludes that the maximal heart distance and the mean heart dose (MHD) are considered predictive of late cardiac toxicities. As the use of inverse-planned intensity modulated radiation therapy (IMRT) is increasing worldwide, we hypothesized that this 3D MHD might not be representative of heart exposure after IMRT for breast cancer (BC). Methods: Patients with left-sided BC and unfavorable cardiac anatomy received IMRT. Their treatment plan was compared to a virtual treatment plan for 3D conformal radiotherapy with similar target volume coverage (study A). Then, a second 3D conformal treatment plan was generated to achieve equivalent individual MHD obtained by IMRT. Then the heart and left anterior descending (LAD) coronary artery exposures were analyzed (study B). Last, the relationship between MHD and the heart volume or LAD coronary artery volume receiving at least 30Gy, 40Gy and 45Gy in function of each additional 1Gy to the MHD was assessed (study C). Results: A significant decrease of heart and LAD coronary artery exposure to high dose was observed with the IMRT compared with the 3D conformal radiotherapy plans that both ensured adequate target coverage (study A). The results of study B and C showed that 3D MHD was not representative of similar heart substructure exposure with IMRT, especially in the case of high dose exposure. Conclusions: The mean heart dose is not a representative dosimetric parameter to assess heart exposure following IMRT. Equivalent MHD values following IMRT and 3DRT BC treatment do not represent the same dose distribution leading to extreme caution when using this parameter for IMRT plan validation.

7.
Cancers (Basel) ; 13(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638336

RESUMO

Liver SBRT is a therapeutic option for the treatment of HCC in patients not eligible for other local therapies. We retrospectively report the outcomes of a cohort of consecutive patients treated with SBRT for HCC at the Montpellier Cancer Institute. Between March 2013 and December 2018, 66 patients were treated with image-guided liver SBRT using VMAT and real-time adaptive tumor gating in our institute. The main endpoints considered in this study were local control, disease-free survival, overall survival, and toxicity. The median follow-up was 16.8 months. About 66.7% had prior liver treatment. Most patients received 50 Gy in five fractions of 10 Gy. No patient had local recurrence. Overall survival and disease-free survival were, respectively, 83.9% and 46.7% at one year. In multivariate analysis, the diameter of the lesions was a significant prognostic factor associated with disease-free survival (HR = 2.57 (1.19-5.53) p = 0.02). Regarding overall survival, the volume of PTV was associated with lower overall survival (HR = 2.84 (1.14-7.08) p = 0.025). No grade 3 toxicity was observed. One patient developed a grade 4 gastric ulcer, despite the dose constraints being respected. Image-guided liver SBRT with VMAT is an effective and safe treatment in patients with inoperable HCC, even in heavily pre-treated patients. Further prospective evaluation will help to clarify the role of SBRT in the management of HCC patients.

8.
Rep Pract Oncol Radiother ; 24(1): 97-104, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30532657

RESUMO

BACKGROUND: The management of breath-induced tumor motion is a major challenge for lung stereotactic body radiation therapy (SBRT). Three techniques are currently available for these treatments: tracking (T), gating (G) and free-breathing (FB). AIM: To evaluate the dosimetric differences between these three treatment techniques for lung SBRT. MATERIALS AND METHODS: Pretreatment 4DCT data were acquired for 10 patients and sorted into 10 phases of a breathing cycle, such as 0% and 50% phases defined respectively as the inhalation and exhalation maximum. GTVph, PTVph (=GTVph + 3 mm) and the ipsilateral lung were contoured on each phase.For the tracking technique, 9 fixed fields were adjusted to each PTVph for the 10 phases. The gating technique was studied with 3 exhalation phases (40%, 50% and 60%). For the free-breathing technique, ITVFB was created from a sum of all GTVph and a 3 mm margin was added to define a PTVFB. Fields were adjusted to PTVFB and dose distributions were calculated on the average intensity projection (AIP) CT. Then, the beam arrangement with the same monitor units was planned on each CT phase.The 3 modalities were evaluated using DVHs of each GTVph, the homogeneity index and the volume of the ipsilateral lung receiving 20 Gy (V 20Gy). RESULTS: The FB system improved the target coverage by increasing D mean (75.87(T)-76.08(G)-77.49(FB)Gy). Target coverage was slightly more homogeneous, too (HI: 0.17(T and G)-0.15(FB)). But the lung was better protected with the tracking system (V 20Gy: 3.82(T)-4.96(G)-6.34(FB)%). CONCLUSIONS: Every technique provides plans with a good target coverage and lung protection. While irradiation with free-breathing increases doses to GTV, irradiation with the tracking technique spares better the lung but can dramatically increase the treatment complexity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...