Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 675: 236-250, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38970910

RESUMO

Pre-treatment of diamond surface in low-temperature plasma for oxygenation and in acids for carboxylation was hypothesized to promote the branching density of the hyperbranched glycidol polymer. This was expected to increase the homogeneity of the branching level and suppress interactions with proteins. As a result, composite nanodiamonds with reduced hydrodynamic diameters that are maintained in physiological environments were anticipated. Surfaces of 140-nm-sized nanodiamonds were functionalized with oxygen and carboxyl groups for grafting of hyperbranched dendritic polyglycerol via anionic ring-opening polymerization of glycidol. The modification was verified with Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Dynamic light scattering investigated colloidal stability in pH-diverse (2-12) solutions, concentrated phosphate-buffered saline, and cell culture media. Thermogravimetric analysis of nanodiamonds-protein incubations examined non-specific binding. Fluorescence emission was tested across pH conditions. Molecular dynamics simulations modeled interparticle interactions in ionic solutions. The hyperbranched polyglycerol grafting increased colloidal stability of nanodiamonds across diverse pH, high ionic media like 10 × concentrated phosphate-buffered saline, and physiological media like serum and cell culture medium. The hyperbranched polyglycerol suppressed non-specific protein adsorption while maintaining intensive fluorescence of nanodiamonds regardless of pH. Molecular modelling indicated reduced interparticle interactions in ionic solutions correlating with the improved colloidal stability.

2.
Materials (Basel) ; 17(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793425

RESUMO

The influence of different solvents, including aqueous and nonaqueous types, on the physicochemical properties of V2O5 nanostructures was thoroughly investigated. Various characterization techniques, such as XRD, XPS, FTIR, Raman spectroscopy, UV-vis DRS, SEM, TEM, and BET, were employed to analyze the obtained materials. Additionally, the adsorption properties of the synthesized V2O5 nanostructures for methylene blue were examined, and kinetic parameters of adsorption were calculated. The results demonstrate that the morphology of the obtained crystals can be finely controlled by manipulating water concentration in the solution, showcasing its profound impact on both the structural characteristics and adsorption properties of the nanostructures. Furthermore, the structural changes of the resulting V2O5 material induced by solvents show strong impacts on its photocatalytic properties, making it a promising photocatalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...