Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 76(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37563082

RESUMO

This study aimed to investigate the antibiotic resistance and biofilm formation of Acinetobacter calcoaceticus-A. baumannii (ACB) complex isolates recovered from a university hospital in Pelotas, RS, Brazil. The species were confirmed using gyrB multiplex and blaOXA-51-like genes PCR. The presence of the bfmRS virulence gene was evaluated by the PCR, and the isolates were classified based on their biofilm-forming ability on polystyrene (PO) and glass surfaces (TM). Out of 50 ACB complex isolates evaluated, 41 were identified as A. baumannii and nine as A. nosocomialis. The bfmRS gene was detected in 97.6% (40/41) of A. baumannii and 33.3% (3/9) of A. nosocomialis species. Forty-nine isolates exhibited a multidrug-resistant (MDR) profile, while one A. nosocomialis isolate presented an extensively drug-resistant (XDR) profile. All isolates were able of forming biofilms on PO surfaces and 98% (49/50) on TM surfaces. A significant correlation was observed between biofilm production on PO and TM surfaces (P < 0.05). However, no correlation was found between biofilms forming and the presence of the bfmRS gene or displaying a certain antibiotic resistance profile. In conclusion, A. baumannii and A. nosocomialis are frequent species causing nosocomial infections in a hospital in Pelotas, RS, Brazil, and both are capable of forming biofilms.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Acinetobacter baumannii/genética , Brasil , Hospitais Universitários , Biofilmes , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
2.
J Med Microbiol ; 70(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34779756

RESUMO

Introduction. A significant cause of mortality in the intensive care unit (ICU) is multidrug-resistant (MDR) Gram-negative bacteria, such as Klebsiella pneumoniae carbapenemase (KPC). Biofilm production is a key factor in KPC colonization and persistence in the host, making the treatment difficult.Gap Statement. The aim of this study was to evaluate the antibiotic resistance, molecular and phenotypic biofilm profiles of 12 KPC isolates associated with nosocomial infection in a hospital in Pelotas, Rio Grande do Sul, Brazil.Methodology. Clinical isolates were obtained from different sources, identified and characterized by antibiotic resistance and carbapenemase synthesis following the Clinical and Laboratory Standards Institute (CLSI) guidelines. Polymerase chain reaction (PCR) was used to evaluate the presence of carbapenemase (blaKPC) and biofilm formation-associated genes (fimA, fimH, rmpA, ecpA, mrkD and wabG). Additionally, phenotypic evaluation of in vitro biofilm formation capacity was evaluated by Congo red agar (CRA) assay and the crystal violet staining method.Results. The 12 isolates evaluated in this study presented the blaKPC gene and were positive for synthesizing carbapenemases in vitro. In the carbapenem class, 83.3 % isolates were resistant and 16.7 % intermediately resistant to imipenem and meropenem. Molecular analyses found that the fimA and wabG genes were detected in 75 % of isolates, while fimH and ecpA were detected in 42 % and mrkD were detected in 8.3 % (1). The CRA assay demonstrated that all isolates were slime producers and 91.7 % (11) of isolates were classified as strong and 8.3 % (1) as moderate biofilm producers by the crystal violet staining method. The optical density (OD540nm) for strong biofilm formers ranged from 0.80±0.05 to 2.47±0.28 and was 0.55±0.12 for moderate biofilm formers.Conclusion. Our study revealed a high level of antibiotic resistance and biofilm formation in KPC isolates obtained from a hospital in Pelotas, RS, Brazil.


Assuntos
Biofilmes , Infecções por Klebsiella , Klebsiella pneumoniae , beta-Lactamases , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Brasil , Violeta Genciana , Hospitais , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Fenótipo , beta-Lactamases/genética
3.
Mol Biol Rep ; 47(12): 9615-9625, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33190200

RESUMO

Antimicrobial resistance is increasing around the world and the search for effective treatment options, such as new antibiotics and combination therapy is urgently needed. The present study evaluates oregano essential oil (OEO) antibacterial activities against reference and multidrug-resistant clinical isolates of Acinetobacter baumannii (Ab-MDR). Additionally, the combination of the OEO and polymyxin B was evaluated against Ab-MDR. Ten clinical isolates were characterized at the species level through multiplex polymerase chain reaction (PCR) for the gyrB and blaOXA-51-like genes. The isolates were resistant to at least four different classes of antimicrobial agents, namely, aminoglycosides, cephems, carbapenems, and fluoroquinolones. All isolates were metallo-ß-lactamase (MßL) and carbapenemase producers. The major component of OEO was found to be carvacrol (71.0%) followed by ß-caryophyllene (4.0%), γ-terpinene (4.5%), p-cymene (3,5%), and thymol (3.0%). OEO showed antibacterial effect against all Ab-MDR tested, with minimum inhibitory concentrations (MIC) ranging from 1.75 to 3.50 mg mL-1. Flow cytometry demonstrated that the OEO causes destabilization and rupture of the bacterial cell membrane resulting in apoptosis of A. baumannii cells (p < 0.05). Synergic interaction between OEO and polymyxin B (FICI: 0.18 to 0.37) was observed, using a checkerboard assay. When combined, OEO presented until 16-fold reduction of the polymyxin B MIC. The results presented here indicate that the OEO used alone or in combination with polymyxin B in the treatment of Ab-MDR infections is promising. To the best of our knowledge, this is the first report of OEO and polymyxin B association against Ab-MDR clinical isolates.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Óleos Voláteis/farmacologia , Origanum/química , Polimixina B/farmacologia , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/crescimento & desenvolvimento , Aminoglicosídeos/farmacologia , Antibacterianos/isolamento & purificação , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , Cimenos/isolamento & purificação , Cimenos/farmacologia , DNA Girase/genética , DNA Girase/metabolismo , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/genética , Sinergismo Farmacológico , Fluoroquinolonas/farmacologia , Expressão Gênica , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Sesquiterpenos Policíclicos/isolamento & purificação , Sesquiterpenos Policíclicos/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...