Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(22): 10194-10206, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767516

RESUMO

We report details on the synthesis and properties of barium praseodymium tungstate, Ba2PrWO6, a double perovskite that has not been synthesized before. Room-temperature (RT) powder X-ray diffraction identified the most probable space group (SG) as monoclinic I2/m, but it was only slightly distorted from the cubic structure. X-ray photoelectron spectroscopy confirmed that the initial (postsynthesis) material contained praseodymium in both 3+ and 4+ charge states. The former (Pr3+) disappeared after exposure to UV light at RT. Photoluminescence studies of Pr3+ revealed that Ba2PrWO6 is an insulator with a band gap exceeding 4.93 eV. Pressure-dependent Raman spectroscopy excluded the possibility of a phase transition up to 20 GPa; however, measurements between 8 and 873 K signified that there might be a change toward the lower symmetry SG below 200 K. Electron paramagnetic resonance spectra revealed the presence of interstitial oxygen which acts as a deep electron trap.

3.
ACS Omega ; 7(22): 18382-18408, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694470

RESUMO

This comprehensive work showcases two novel, rock-salt-type minerals in the form of amphoteric cerium-tungstate double perovskite and ilmenite powders created via a high-temperature solid-state reaction in inert gases. The presented studies have fundamental meaning and will mainly focus on a detailed synthesis description of undoped structures, researching their possible polymorphism in various conditions and hinting at some nontrivial physicochemical properties like charge transfer for upcoming optical studies after eventual doping with selectively chosen rare-earth ions. The formerly mentioned, targeted A2BB'X6 group of compounds contains mainly divalent alkali cations in the form of XIIA = Ba2+, Ca2+ sharing, here, oxygen-arranged clusters (IIX = O2-) with purposely selected central ions from f-block VIB = Ce4/3+ and d-block VIB' = W4/5/6+ since together they often possess some exotic properties that could be tuned and implemented into futuristic equipment like sensors or energy converters. Techniques like powder XRD, XPS, XAS, EPR, Raman, and FTIR spectroscopies alongside DSC and TG were involved with an intent to thoroughly describe any possible changes within these materials. Mainly, to have a full prospect of any desirable or undesirable phenomena before diving into more complicated subjects like: energy or charge transfer in low temperatures; to reveal whether or not the huge angular tilting generates large enough dislocations within the material's unit cell to change its initial properties; or if temperature and pressure stimuli are responsible for any phase transitions and eventual, irreversible decomposition.

5.
Inorg Chem ; 58(9): 5617-5629, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30998007

RESUMO

We report detailed optical studies of BaWO4:Ce and BaWO4:Ce,Na single crystals. The material does not emit any luminescence at ambient pressure under near-UV (325 nm) excitation. Efficient green light is emitted only at high pressure (HP) and low temperature (LT). The luminescence is of excitonic character, since the lowest Ce3+ 5d level is degenerate with the conduction band also under hydrostatic pressures. To explain these phenomena, absorption measurements were made together with powder X-ray diffraction (XRD) and confocal micro-Raman and Fourier transform infrared (FTIR) spectroscopy. Raman experiments confirm the existence of a metastable phase, induced by certain nonhydrostatic conditions, before the reversible transition at a high-pressure range above 9 GPa, where efficient photoluminescence (PL) occurs. Although the phase transition is reversible, it proceeds with a prominent hysteresis observed in luminescence and Raman experiments. FTIR focuses on the existence of Ce3+ multisites observed during LT measurements.

6.
J Phys Chem A ; 123(18): 4021-4033, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31013085

RESUMO

We demonstrate a potential optical thermometric material, Pr3+-doped triple-layered perovskite Na2La2Ti3O10 microcrystals, which promises a remarkable performance in temperature sensing over a wide temperature range (125-533 K), with a maximum relative sensitivity of 2.43% K-1 at 423 K. Both temperature and high-pressure dependent photoluminescence measurements were performed for this compound. It turns out that the Pr3+-Ti4+ intervalence charge transfer state is the primary cause for the very efficient thermometric characteristics in the 296-533 K range. In the 125-300 K range, 3P1 and 3P0 levels of Pr3+ can be exploited as thermally coupled energy levels for temperature sensing with high sensitivity at and below room temperature. A significant enhancement of the Pr3+ ions' luminescence observed in the 4.5-300 K range is ascribed to an efficient, thermally activated energy transfer process from the host to Pr3+ ions. Carrier recombination on Pr3+ related hole traps was proposed in the studied system. The thermoluminescence properties are investigated, and possible mechanisms for the interpretation of the experimental results are discussed as well. This work may provide a perspective approach to design a high-performance, self-calibrated optical thermometer operating over a wide temperature range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...