Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 105(10): 3046-3056, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27522919

RESUMO

Vaccine drug product thermal stability often depends on formulation input factors and how they interact. Scientific understanding and professional experience typically allows vaccine formulators to accurately predict the thermal stability output based on formulation input factors such as pH, ionic strength, and excipients. Thermal stability predictions, however, are not enough for regulators. Stability claims must be supported by experimental data. The Quality by Design approach of Design of Experiment (DoE) is well suited to describe formulation outputs such as thermal stability in terms of formulation input factors. A DoE approach particularly at elevated temperatures that induce accelerated degradation can provide empirical understanding of how vaccine formulation input factors and interactions affect vaccine stability output performance. This is possible even when clear scientific understanding of particular formulation stability mechanisms are lacking. A DoE approach was used in an accelerated 37(°)C stability study of an aluminum adjuvant Neisseria meningitidis serogroup B vaccine. Formulation stability differences were identified after only 15 days into the study. We believe this study demonstrates the power of combining DoE methodology with accelerated stress stability studies to accelerate and improve vaccine formulation development programs particularly during the preformulation stage.


Assuntos
Adjuvantes Imunológicos/química , Composição de Medicamentos/métodos , Desenho de Fármacos , Vacinas/química , Adjuvantes Imunológicos/administração & dosagem , Animais , Química Farmacêutica , Composição de Medicamentos/tendências , Estabilidade de Medicamentos , Feminino , Meningite Meningocócica/imunologia , Meningite Meningocócica/prevenção & controle , Camundongos , Neisseria meningitidis/efeitos dos fármacos , Neisseria meningitidis/imunologia , Vacinas/administração & dosagem , Vacinas/imunologia
2.
BMC Microbiol ; 16(1): 165, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27464881

RESUMO

BACKGROUND: Chlamydia trachomatis is a human pathogen which causes a number of pathologies, including genital tract infections in women that can result in tubal infertility. Prevention of infection and disease control might be achieved through vaccination; however, a safe, efficacious and cost-effective vaccine against C. trachomatis infection remains an unmet medical need. C. trachomatis major outer membrane protein (MOMP), a ß-barrel integral outer membrane protein, is the most abundant antigen in the outer membrane of the bacterium and has been evaluated as a subunit vaccine candidate. Recombinant MOMP (rMOMP) expressed in E. coli cytoplasm forms inclusion bodies and rMOMP extracted from inclusion bodies results in a reduced level of protection compared to the native MOMP in a mouse challenge model. RESULTS: We sought to target the recombinant expression of MOMP to the E. coli outer membrane (OM). Successful surface expression was achieved with codon harmonization, utilization of low copy number vectors and promoters with moderate strength, suitable leader sequences and optimization of cell culture conditions. rMOMP was extracted from E. coli outer membrane, purified, and characterized biophysically. The OM expressed and purified rMOMP is immunogenic in mice and elicits antibodies that react to the native antigen, Chlamydia elementary body (EB). CONCLUSIONS: C. trachomatis MOMP was functionally expressed on the surface of E. coli outer membrane. The OM expressed and purified rMOMP elicits antibodies that react to the native antigen, Chlamydia EB, in a mouse immunogenicity model. Surface expression of MOMP could provide useful reagents for vaccine research, and the methodology could serve as a platform to produce other outer membrane proteins recombinantly.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Chlamydia trachomatis/genética , Escherichia coli/genética , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/biossíntese , Vacinas Bacterianas/biossíntese , Vacinas Bacterianas/química , Células Cultivadas , Infecções por Chlamydia/prevenção & controle , Clonagem Molecular , DNA Bacteriano/genética , Escherichia coli/metabolismo , Feminino , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/biossíntese , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
3.
Vaccine ; 34(35): 4250-4256, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27269057

RESUMO

Trivalent native outer membrane vesicles (nOMVs) derived from three genetically modified Neisseria meningitidis serogroup B strains have been previously evaluated immunologically in mice and rabbits. This nOMV vaccine elicited serum bactericidal activity (SBA) against multiple N. meningitidis serogroup B strains as well as strains from serogroups C, Y, W, and X. In this study, we used trivalent nOMVs isolated from the same vaccine strains and evaluated their immunogenicity in an infant Rhesus macaque (IRM) model whose immune responses to the vaccine are likely to be more predictive of the responses in human infants. IRMs were immunized with trivalent nOMV vaccines and sera were evaluated for exogenous human serum complement-dependent SBA (hSBA). Antibody responses to selected hSBA generating antigens contained within the trivalent nOMVs were also measured and we found that antibody titers against factor H binding protein variant 2 (fHbpv2) were very low in the sera from animals immunized with these original nOMV vaccines. To increase the fHbp content in the nOMVs, the vaccine strains were further genetically altered by addition of another fHbp gene copy into the porB locus. Trivalent nOMVs from the three new vaccine strains had higher fHbp antigen levels and generated higher anti-fHbp antibody responses in immunized mice and IRMs. As expected, fHbp insertion into the porB locus resulted in no PorB expression. Interestingly, higher expression of PorA, an hSBA generating antigen, was observed for all three modified vaccine strains. Compared to the trivalent nOMVs from the original strains, higher PorA levels in the improved nOMVs resulted in higher anti-PorA antibody responses in mice and IRMs. In addition, hSBA titers against other strains with PorA as the only hSBA antigen in common with the vaccine strains also increased.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Engenharia Genética , Imunogenicidade da Vacina , Vacinas Meningocócicas/imunologia , Vesículas Transportadoras/imunologia , Animais , Anticorpos Antibacterianos/sangue , Formação de Anticorpos , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Macaca mulatta , Vacinas Meningocócicas/genética , Neisseria meningitidis , Neisseria meningitidis Sorogrupo B , Porinas/genética
4.
Hum Vaccin Immunother ; 11(6): 1518-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25997113

RESUMO

The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.


Assuntos
Antígenos de Bactérias/análise , Proteínas de Bactérias/análise , Cromatografia Líquida/métodos , Vacinas Meningocócicas/química , Espectrometria de Massas em Tandem/métodos , Descoberta de Drogas/métodos , Humanos , Neisseria meningitidis Sorogrupo B/imunologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-23226683

RESUMO

Antibodies that neutralize infectivity of malaria sporozoites target the central repeat region of the circumsporozoite (CS) protein, which in Plasmodium falciparum is comprised primarily of 30-40 tandem NANP tetramer repeats. We evaluated immunogenicity of an alum-adsorbed (NANP)(6) peptide conjugated to an outer membrane protein complex (OMPC) derived from Neisseria meningitidis, a carrier protein used in a licensed Haemophilus influenzae pediatric vaccine. Mice immunized with (NANP)(6)-OMPC adsorbed to Merck's alum adjuvant (MAA), with or without Iscomatrix® as co-adjuvant, developed high levels of anti-repeat peptide antibody that inhibited in vitro invasion of human hepatoma cells by transgenic P. berghei sporozoites that express P. falciparum CS repeats (PfPb). Inhibition of sporozoite invasion in vitro correlated with in vivo resistance to challenge by the bites of PfPb-infected mosquitoes. Challenged mice had >90% reduction of hepatic stage parasites as measured by real-time PCR, and either sterile immunity, i.e., no detectable blood stage parasites, or delayed prepatent periods which indicate neutralization of a majority, but not all, sporozoites. Rhesus macaques immunized with two doses of (NANP)(6)-OMPC/MAA formulated with Iscomatrix® developed anti-repeat antibodies that persisted for ~2 years. A third dose of (NANP)(6)-OMPC/MAA+ Iscomatrix® at that time elicited strong anamnestic antibody responses. Rhesus macaque immune sera obtained post second and third dose of vaccine displayed high levels of sporozoite neutralizing activity in vitro that correlated with presence of high anti-repeat antibody titers. These preclinical studies in mice of different MHC haplotypes and a non-human primate support use of CS peptide-OMPC conjugates as a highly immunogenic platform to evaluate CS protective epitopes. Potential pre-erythrocytic vaccines can be combined with sexual blood stage vaccines as a multi-antigen malaria vaccine to block invasion and transmission of Plasmodium parasites.


Assuntos
Anticorpos Neutralizantes/sangue , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Vacinação/métodos , Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Anticorpos Antiprotozoários/sangue , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Modelos Animais de Doenças , Feminino , Macaca mulatta , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Camundongos , Camundongos Endogâmicos BALB C , Neisseria meningitidis/química , Doenças dos Primatas/prevenção & controle , Proteínas de Protozoários/genética , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/genética , Vacinas Conjugadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
6.
Vaccine ; 29(44): 7752-8, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21827811

RESUMO

A trivalent native outer membrane vesicle vaccine that has potential to provide broad based protection against Neisseria meningitidis serogroup B strains has been developed. Preliminary immunogenicity studies in mice showed that the vaccine was capable of inducing an effective broad based bactericidal antibody response against N. meningitidis serogroup B strains. These findings in mice have been repeated with a cGMP trivalent NOMV vaccine and extended to show that the bactericidal antibody response induced by the vaccine in mice is effective against strains belonging to serogroups C, Y, W135, X, and NadA-expressing serogroup A strains. Taken together these results suggest that this experimental vaccine may provide protection against both serogroup B and non-serogroup B N. meningitidis strains.


Assuntos
Anticorpos Antibacterianos/sangue , Atividade Bactericida do Sangue , Reações Cruzadas , Exossomos/imunologia , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo B/imunologia , Animais , Vacinas Meningocócicas/administração & dosagem , Camundongos
7.
Proc Natl Acad Sci U S A ; 103(48): 18243-8, 2006 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17110440

RESUMO

The development of protein subunit vaccines to combat some of the world's deadliest pathogens such as a malaria parasite, Plasmodium falciparum, is stalled, due in part to the inability to induce and sustain high-titer antibody responses. Here, we show the induction of persistent, high-titer antibody responses to recombinant Pfs25H, a human malarial transmission-blocking protein vaccine candidate, after chemical conjugation to the outer-membrane protein complex (OMPC) of Neisseria meningitidis serogroup B and adsorption to aluminum hydroxyphosphate. In mice, the Pfs25H-OMPC conjugate vaccine was >1,000 times more potent in generating anti-Pfs25H ELISA reactivity than a similar 0.5-microg dose of Pfs25H alone in Montanide ISA720, a water-in-oil adjuvant. The immune enhancement requires covalent conjugation between Pfs25H and the OMPC, given that physically mixed Pfs25H and OMPC on aluminum hydroxyphosphate failed to induce greater activity than the nonconjugated Pfs25H on aluminum hydroxyphosphate. The conjugate vaccine Pfs25H-OMPC also was highly immunogenic in rabbits and rhesus monkeys. In rhesus monkeys, the antibody responses were sustained over 18 months, at which time another vaccination with nonconjugated Pfs25H induced strong anamnestic responses. The vaccine-induced anti-Pfs25-specific antibodies in all animal species blocked the transmission of parasites to mosquitoes. Protein antigen conjugation to OMPC or other protein carrier may have general application to a spectrum of protein subunit vaccines to increase immunogenicity without the need for potentially reactogenic adjuvants.


Assuntos
Formação de Anticorpos/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Hidróxido de Alumínio/imunologia , Animais , Transmissão de Doença Infecciosa , Imunização , Macaca mulatta , Camundongos , Ligação Proteica , Titulometria
8.
J Pharm Sci ; 95(1): 70-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16315228

RESUMO

We report the preparation and the immunogenicity of a conjugate vaccine obtained by chemically conjugating a variant of the extracellular peptide fragment of influenza type A M2 protein to the human papillomavirus (HPV) viruslike particle (VLP). Conjugates comprised of approximately 4,000 copies of the antigenic peptide per VLP are obtained as the result of the reaction between a C-terminal cysteine residue on the peptide and the maleimide-activated HPV VLP. The resulting conjugates have an average particle size slightly larger than the carrier and present enhanced overall stability against chemical and thermal-induced denaturation. The M2-HPV VLP conjugates lost the binding affinity for anti-HPV conformational antibodies but retained reactivity to a M2-specific monoclonal antibody. The conjugate vaccine formulated with aluminum adjuvant and delivered in two doses of 30-ng peptide was found to be highly immunogenic and conferred good protection against lethal challenge of influenza virus in mice. These results suggest that HPV VLP can be used as a carrier for synthetic or small antigens for the development of subunit vaccines.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza , Papillomaviridae , Vacinas Conjugadas , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/administração & dosagem , Antígenos Virais/imunologia , Portadores de Fármacos , Feminino , Vírus da Influenza A/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/imunologia , Análise de Sobrevida , Vacinação , Proteínas da Matriz Viral/administração & dosagem , Vírion
9.
Vaccine ; 22(23-24): 2993-3003, 2004 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-15297047

RESUMO

A universal influenza virus vaccine that does not require frequent updates and/or annual immunizations will offer significant advantages over current seasonal flu vaccines. The highly conserved influenza virus A M2 membrane protein has been previously suggested as a potential antigen target for such a vaccine. Here, we report systematic evaluation of M2 peptide conjugate vaccines (synthetic peptides of M2 extracellular domain conjugated to keyhole limpet hemocyanin (KLH) or Neisseria meningitidis outer membrane protein complex (OMPC)) in mice, ferrets, and rhesus monkeys. The conjugate vaccines were highly immunogenic in all species tested and were able to confer both protection against lethal challenge of either H1N1 or H3N1 virus in mice and reduce viral shedding in the lower respiratory tracts of mice and ferrets. The protection against lethal challenge in mice could also be achieved by passive transfer of monkey sera containing high M2 antibody titers. In addition, we showed that M2 antisera were cross reactive with M2 peptides derived from a wide range of human influenza A strains, but they failed to react with M2 peptides of the pathogenic H5N1 virus (A/Hong Kong/97). The data presented here will permit better understanding of the potential of an M2-based vaccine approach.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza/uso terapêutico , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/biossíntese , Proteínas da Membrana Bacteriana Externa/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Furões , Hemocianinas/imunologia , Pulmão/virologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Mucosa Nasal/virologia , Neisseria meningitidis/imunologia , Infecções por Orthomyxoviridae/virologia , Vacinas Conjugadas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Replicação Viral
10.
Carbohydr Res ; 338(9): 903-22, 2003 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-12681914

RESUMO

Colonization of implanted medical devices by coagulase-negative staphylococci such as Staphylococcus epidermidis is mediated by the bacterial polysaccharide intercellular adhesin (PIA), a polymer of beta-(1-->6)-linked glucosamine substituted with N-acetyl and O-succinyl constituents. The icaADBC locus containing the biosynthetic genes for production of PIA has been identified in both S. epidermidis and S. aureus. Whereas it is clear that PIA is a constituent that contributes to the virulence of S. epidermidis, it is less clear what role PIA plays in infection with S. aureus. Recently, identification of a novel polysaccharide antigen from S. aureus termed poly N-succinyl beta-(1-->6)-glucosamine (PNSG) has been reported. This polymer was composed of the same glycan backbone as PIA but was reported to contain a high proportion of N-succinylation rather than acetylation. We have isolated a glucosamine-containing exopolysaccharide from the constitutive over-producing MN8m strain of S. aureus in order to prepare polysaccharide-protein conjugate vaccines. In this report we demonstrate that MN8m produced a high-molecular-weight (>300,000 Da) polymer of beta-(1-->6)-linked glucosamine containing 45-60% N-acetyl, and a small amount of O-succinyl (approx 10% mole ratio to monosaccharide units). By detailed NMR analyses of polysaccharide preparations, we show that the previous identification of N-succinyl was an analytical artifact. The exopolysaccharide we have isolated is active in in vitro hemagglutination assays and is immunogenic in mice when coupled to a protein carrier. We therefore conclude that S. aureus strain MN8m produces a polymer that is chemically and biologically closely related to the PIA produced by S. epidermidis.


Assuntos
Polissacarídeos Bacterianos/imunologia , Polissacarídeos Bacterianos/isolamento & purificação , Staphylococcus aureus/química , Animais , Configuração de Carboidratos , Cromatografia em Gel , Ensaio de Imunoadsorção Enzimática , Testes de Hemaglutinação , Ácidos Levulínicos/análise , Ácidos Levulínicos/química , Espectroscopia de Ressonância Magnética , Camundongos , Peso Molecular , Polissacarídeos Bacterianos/química
11.
J Virol ; 76(5): 2150-8, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11836392

RESUMO

We previously reported a number of features of hepatitis C virus (HCV) chimeric glycoproteins related to pseudotype virus entry into mammalian cells. In this study, pseudotype virus was neutralized by HCV E2 glycoprotein-specific antibodies and infected human sera. Neutralization (50% reduction of pseudotype virus plaque formation) was observed with two human immunoglobulin G1 monoclonal antibodies (MAbs) at concentrations of between 2.5 and 10 microg/ml. A hyperimmune rabbit antiserum to an E2 hypervariable region 1 (HVR1) mimotope also exhibited an HCV E2 pseudotype virus neutralization titer of approximately 1/50. An E1 pseudotype virus used as a negative control was not neutralized to a significant level (<1/10) by these MAbs or rabbit antiserum to E2 HVR1. Since HCV probably has a lipid envelope, the role of complement in antibody-mediated virus neutralization was examined. Significant increases in the neutralization titers of the human MAbs (approximately 60- to 160-fold higher) and rabbit antiserum to HVR1 mimotopes (approximately 10-fold higher) were observed upon addition of guinea pig complement. Further, these studies suggested that complement activation occurred primarily by the classical pathway, since a deficiency in the C4 component led to a significant decrease in the level of virus neutralization. This same decrease was not observed with factor B-deficient complement. We also determined that 9 of 56 HCV-infected patient sera (16%) had detectable pseudotype virus neutralization activity at serum dilutions of between 1/20 and 1/50 and that complement addition enhanced the neutralization activity of some of the HCV-infected human sera. Taken together, these results suggest that during infection, HCV E2 glycoprotein induces a weak neutralizing antibody response, that those antibodies can be measured in vitro by the surrogate pseudotype virus plaque reduction assay, and that neutralization function can be augmented by complement.


Assuntos
Anticorpos Facilitadores , Proteínas do Sistema Complemento/metabolismo , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Proteínas do Envelope Viral/imunologia , Anticorpos Monoclonais/imunologia , Hepacivirus/genética , Hepatite C/imunologia , Anticorpos Anti-Hepatite C/sangue , Humanos , Soros Imunes/imunologia , Testes de Neutralização , Proteínas Recombinantes de Fusão/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...