Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38392719

RESUMO

Engineering of oxygen vacancies (Vo) in nanomaterials allows diligent control of their physicochemical properties. SrTiO3 possesses the typical ABO3 structure and has attracted considerable attention among the titanates due to its chemical stability and its high conduction band energy. This has resulted in its extensive use in photocatalytic energy-related processes, among others. Herein, we introduce the use of Flame Spray Pyrolysis (FSP); an industrial and scalable process to produce Vo-rich SrTiO3 perovskites. We present two types of Anoxic Flame Spray Pyrolysis (A-FSP) technologies using CH4 gas as a reducing source: Radial A-FSP (RA-FSP); and Axial A-FSP (AA-FSP). These are used for the control engineering of oxygen vacancies in the SrTiO3-x nanolattice. Based on X-ray photoelectron spectroscopy, Raman and thermogravimetry-differential thermal analysis, we discuss the role and the amount of the Vos in the so-produced nano-SrTiO3-x, correlating the properties of the nanolattice and energy-band structure of the SrTiO3-x. The present work further corroborates the versatility of FSP as a synthetic process and the potential future application of this process to engineer photocatalysts with oxygen vacancies in quantities that can be measured in kilograms.

2.
Nanomaterials (Basel) ; 13(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38063702

RESUMO

Flame spray pyrolysis (FSP) is an industrially scalable technology that enables the engineering of a wide range of metal-based nanomaterials with tailored properties nanoparticles. In the present review, we discuss the recent state-of-the-art advances in FSP technology with regard to nanostructure engineering as well as the FSP reactor setup designs. The challenges of in situ incorporation of nanoparticles into complex functional arrays are reviewed, underscoring FSP's transformative potential in next-generation nanodevice fabrication. Key areas of focus include the integration of FSP into the technology readiness level (TRL) for nanomaterials production, the FSP process design, and recent advancements in nanodevice development. With a comprehensive overview of engineering methodologies such as the oxygen-deficient process, double-nozzle configuration, and in situ coatings deposition, this review charts the trajectory of FSP from its foundational roots to its contemporary applications in intricate nanostructure and nanodevice synthesis.

3.
Nanomaterials (Basel) ; 13(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770444

RESUMO

ABO3 perovskites offer versatile photoactive nano-templates that can be optimized towards specific technologies, either by means of doping or via heterojunction engineering. SrTiO3 is a well-studied perovskite photocatalyst, with a highly reducing conduction-band edge. Herein we present a Double-Nozzle Flame Spray Pyrolysis (DN-FSP) technology for the synthesis of high crystallinity SrTiO3 nanoparticles with controlled La-doping in tandem with SrTiO3/CuO-heterojunction formation. So-produced La:SrTiO3/CuO nanocatalysts were optimized for photocatalysis of H2O/CH3OH mixtures by varying the La-doping level in the range from 0.25 to 0.9%. We find that, in absence of CuO, the 0.9La:SrTiO3 material achieved maximal efficient photocatalytic H2 production, i.e., 12 mmol g-1 h-1. Introduction of CuO on La:SrTiO3 enhanced selective production of methane CH4. The optimized 0.25La:SrTiO3/0.5%CuO catalyst achieved photocatalytic CH4 production of 1.5 mmol g-1 h-1. Based on XRD, XRF, XPS, BET, and UV-Vis/DRS data, we discuss the photophysical basis of these trends and attribute them to the effect of La atoms in the SrTiO3 lattice regarding the H2-production, plus the effect of interfacial CuO on the promotion of CH4 production. Technology-wise this work is among the first to exemplify the potential of DN-FSP for scalable production of complex nanomaterials such as La:SrTiO3/CuO with a diligent control of doping and heterojunction in a single-step synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...