Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 67: 102883, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774548

RESUMO

In adverse pregnancy a perturbed redox environment is associated with abnormal early-life cardiovascular development and function. Previous studies have noted alterations in the expression and/or activity of Nuclear Factor E2 Related Factor 2 (NRF2) and its antioxidant targets during human gestational diabetic (GDM) pregnancy, however to our knowledge the functional role of NRF2 in fetal 'priming' of cardiovascular dysfunction in obese and GDM pregnancy has not been investigated. Using a murine model of obesity-induced glucose dysregulated pregnancy, we demonstrate that NRF2 activation by maternal sulforaphane (SFN) supplementation normalizes NRF2-linked NQO1, GCL and CuZnSOD expression in maternal and fetal liver placental and fetal heart tissue by gestational day 17.5. Activation of NRF2 in utero in wild type but not NRF2 deficient mice improved markers of placental efficiency and partially restored fetal growth. SFN supplementation was associated with reduced markers of fetal cardiac oxidative stress, including Nox2 and 3-nitrotyrosine, as well as attenuation of cardiac mass and cardiomyocyte area in male offspring by postnatal day 52 and improved vascular function in male and female offspring by postnatal day 98. Our findings are the first to highlight the functional consequences of NRF2 modulation in utero on early-life cardiovascular function in offspring, demonstrating that activation of NRF2 affords cardiovascular protection in offspring of pregnancies affected by redox dysregulation.


Assuntos
Fator 2 Relacionado a NF-E2 , Placenta , Humanos , Camundongos , Masculino , Feminino , Gravidez , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Placenta/metabolismo , Oxirredução , Isotiocianatos/farmacologia , Obesidade/metabolismo , Estresse Oxidativo , Miócitos Cardíacos/metabolismo
2.
Kidney Int Rep ; 8(7): 1380-1388, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37441489

RESUMO

Introduction: Aortic pulse wave velocity (Ao-PWV) predicts cardiovascular and kidney disease in type 2 diabetes (T2D). Klotho is a circulating antiaging hormone (sKlotho) with putative cardiorenal protective effects. The relationship between sKlotho and Ao-PWV in diabetic kidney disease (DKD) is unknown. Methods: In a cross-sectional cohort study, the correlation of sKlotho measured by a validated immunoassay, and Ao-PWV measured by applanation tonometry, was investigated in 172 participants with T2D and early stage DKD (all had estimated glomerular filtration rate [eGFR] >45 ml/min) on stable renin angiotensin system (RAS) inhibition. In cultured human aortic smooth muscle cells (HASMCs) stimulated with angiotensin II (AngII), the effects of recombinant human sKlotho pretreatment were assessed on intracellular calcium ([Ca2+]i) responses and expression of proteins associated with proosteogenic HASMC phenotypes. Results: Mean (range) age of the cohort was 61.3 years (40-82) and 65% were male. Mean (±SD) Ao-PWV was 11.4 (±2.3) m/s, eGFR 78.8 (±23.5) and median (interquartile range) sKlotho of 358.5 (194.2-706.3) pg/ml. In multivariable linear regression analyses, we observed a statistically significant inverse relationship between sKlotho and Ao-PWV, which was independent of clinical risk factors for cardiorenal disease. Pretreatment of cultured HASMC with sKlotho significantly attenuated AngII-stimulated [Ca2+]i transients and reduced osteogenic collagen (Col1a2) expression. Conclusions: In individuals with T2D and early DKD, lower levels of sKlotho are associated with increased Ao-PWV. Taken together with the direct effect of sKlotho on mediators of aortic wall stiffness in vitro, these findings may explain the enhanced risk of cardiorenal disease in DKD.

3.
Redox Biol ; 38: 101816, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33340902

RESUMO

Activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is critical for vascular endothelial redox homeostasis in regions of high, unidirectional shear stress (USS), however the underlying mechanosensitive mediators are not fully understood. The endothelial glycocalyx is disrupted in arterial areas exposed to disturbed blood flow that also exhibit enhanced oxidative stress leading to atherogenesis. We investigated the contribution of glycocalyx sialic acids (SIA) to Nrf2 signaling in human endothelial cells (EC) exposed to atheroprotective USS or atherogenic low oscillatory shear stress (OSS). Cells exposed to USS exhibited a thicker glycocalyx and enhanced turnover of SIA which was reduced in cells cultured under OSS. Physiological USS, but not disturbed OSS, enhanced Nrf2-mediated expression of antioxidant enzymes, which was attenuated following SIA cleavage with exogenous neuraminidase. SIA removal disrupted kinase signaling involved in the nuclear accumulation of Nrf2 elicited by USS and promoted mitochondrial reactive oxygen species accumulation. Notably, knockdown of the endogenous sialidase NEU1 potentiated Nrf2 target gene expression, directly implicating SIA in regulation of Nrf2 signaling by USS. In the absence of SIA, deficits in Nrf2 responses to physiological flow were also associated with a pro-inflammatory EC phenotype. This study demonstrates that the glycocalyx modulates endothelial redox state in response to shear stress and provides the first evidence of an atheroprotective synergism between SIA and Nrf2 antioxidant signaling. The endothelial glycocalyx therefore represents a potential therapeutic target against EC dysfunction in cardiovascular disease and redox dyshomeostasis in ageing.


Assuntos
Células Endoteliais , Fator 2 Relacionado a NF-E2 , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ácidos Siálicos , Estresse Mecânico
4.
J Cell Mol Med ; 21(3): 621-627, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27696667

RESUMO

Vascular ageing in conditions such as atherosclerosis, diabetes and chronic kidney disease, is associated with the activation of the renin angiotensin system (RAS) and diminished expression of antioxidant defences mediated by the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). The anti-ageing hormone klotho promotes longevity and protects against cardiovascular and renal diseases. Klotho has been shown to activate Nrf2 and attenuate oxidative damage in neuronal cells, however, the mechanisms by which it protects against vascular smooth muscle cell VSMC dysfunction elicited by Angiotensin II (AngII) remain to be elucidated. AngII contributes to vascular ageing and atherogenesis by enhancing VSMC oxidative stress, senescence and apoptosis. This study demonstrates that soluble klotho (1 nM, 24 hrs) significantly induces expression of Nrf2 and the antioxidant enzymes haeme oxygenase (HO-1) and peroxiredoxin-1 (Prx-1) and enhances glutathione levels in human aortic smooth muscle cells (HASMC). Silencing of Nrf2 attenuated the induction of HO-1 and Prx-1 expression by soluble klotho. Furthermore, soluble klotho protected against AngII-mediated HASMC apoptosis and senescence via activation of Nrf2. Thus, our findings highlight a novel Nrf2-mediated mechanism underlying the protective actions of soluble klotho in HAMSC. Targeting klotho may thus represent a therapeutic strategy against VSMC dysfunction and cardiovascular ageing.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/metabolismo , Aorta/metabolismo , Glucuronidase/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Angiotensina II/metabolismo , Apoptose/fisiologia , Células Cultivadas , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Proteínas Klotho , Oxirredução , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...