Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 117(1-3): 367-74, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23756831

RESUMO

It has been shown that removal of manganese from the water-oxidizing complex (WOC) of photosystem II (PSII) leads to flash-induced oxygen consumption (FIOC) which is activated by low concentration of Mn(2+) (Yanykin et al., Biochim Biophys Acta 1797:516-523, 2010). In the present work, we examined the effect of transition and non-transition divalent metal ions on FIOC in Mn-depleted PSII (apo-WOC-PSII) preparations. It was shown that only Mn(2+) ions are able to activate FIOC while other transition metal ions (Fe(2+), V(2+) and Cr(2+)) capable of electron donation to the apo-WOC-PSII suppressed the photoconsumption of O2. Co(2+) ions with a high redox potential (E (0) for Co(2+)/Co(3+) is 1.8 V) showed no effect. Non-transition metal ions Ca(2+) by Mg(2+) did not stimulate FIOC. However, Ca(2+) (in contrast to Mg(2+)) showed an additional activation effect in the presence of exogenic Mn(2+). The Ca(2+) effect depended on the concentration of both Mn(2+) and Ca(2+). The Ca effect was only observed when: (1) the activation of FIOC induced by Mn(2+) did not reach its maximum, (2) the concentration of Ca(2+) did not exceed 40 µM; at higher concentrations Ca(2+) inhibited the Mn(2+)-activated O2 photoconsumption. Replacement of Ca(2+) by Mg(2+) led to a suppression of Mn(2+)-activated O2 photoconsumption; while, addition of Ca(2+) resulted in elimination of the Mg(2+) inhibitory effect and activation of FIOC. Thus, only Mn(2+) and Ca(2+) (which are constituents of the WOC) have specific effects of activation of FIOC in apo-WOC-PSII preparations. Possible reactions involving Mn(2+) and Ca(2+) which could lead to the activation of FIOC in the apo-WOC-PSII are discussed.


Assuntos
Cálcio/farmacologia , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Manganês/farmacologia , Consumo de Oxigênio , Complexo de Proteína do Fotossistema II/metabolismo , Spinacia oleracea/metabolismo , Cátions Bivalentes/farmacologia , Cloroplastos/efeitos dos fármacos , Membranas Intracelulares/efeitos dos fármacos , Íons , Cinética , Consumo de Oxigênio/efeitos dos fármacos , Spinacia oleracea/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...