Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 190: 109953, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37839557

RESUMO

BACKGROUND AND PURPOSE: The FLASH effect has been validated in different preclinical experiments with electrons (eFLASH) and protons (pFLASH) operating at an average dose rate above 40 Gy/s. However, no systematic intercomparison of the FLASH effect produced by eFLASHvs. pFLASH has yet been performed and constitutes the aim of the present study. MATERIALS AND METHODS: The electron eRT6/Oriatron/CHUV/5.5 MeV and proton Gantry1/PSI/170 MeV were used to deliver conventional (0.1 Gy/s eCONV and pCONV) and FLASH (≥110 Gy/s eFLASH and pFLASH) dose rates. Protons were delivered in transmission. Dosimetric and biologic intercomparisons were performed using previously validated dosimetric approaches and experimental murine models. RESULTS: The difference between the average absorbed dose measured at Gantry 1 with PSI reference dosimeters and with CHUV/IRA dosimeters was -1.9 % (0.1 Gy/s) and + 2.5 % (110 Gy/s). The neurocognitive capacity of eFLASH and pFLASH irradiated mice was indistinguishable from the control, while both eCONV and pCONV irradiated cohorts showed cognitive decrements. Complete tumor response was obtained after an ablative dose of 20 Gy delivered with the two beams at CONV and FLASH dose rates. Tumor rejection upon rechallenge indicates that anti-tumor immunity was activated independently of the beam-type and the dose-rate. CONCLUSION: Despite major differences in the temporal microstructure of proton and electron beams, this study shows that dosimetric standards can be established. Normal brain protection and tumor control were produced by the two beams. More specifically, normal brain protection was achieved when a single dose of 10 Gy was delivered in 90 ms or less, suggesting that the most important physical parameter driving the FLASH sparing effect might be the mean dose rate. In addition, a systemic anti-tumor immunological memory response was observed in mice exposed to high ablative dose of electron and proton delivered at CONV and FLASH dose rate.


Assuntos
Produtos Biológicos , Neoplasias , Terapia com Prótons , Humanos , Animais , Camundongos , Prótons , Elétrons , Dosagem Radioterapêutica , Radiometria
2.
bioRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131769

RESUMO

Background and purpose: The FLASH effect has been validated in different preclinical experiments with electrons (eFLASH) and protons (pFLASH) operating at a mean dose rate above 40 Gy/s. However, no systematic intercomparison of the FLASH effect produced by e vs. pFLASH has yet been performed and constitutes the aim of the present study. Materials and methods: The electron eRT6/Oriatron/CHUV/5.5 MeV and proton Gantry1/PSI/170 MeV were used to deliver conventional (0.1 Gy/s eCONV and pCONV) and FLASH (≥100 Gy/s eFLASH and pFLASH) irradiation. Protons were delivered in transmission. Dosimetric and biologic intercomparisons were performed with previously validated models. Results: Doses measured at Gantry1 were in agreement (± 2.5%) with reference dosimeters calibrated at CHUV/IRA. The neurocognitive capacity of e and pFLASH irradiated mice was indistinguishable from the control while both e and pCONV irradiated cohorts showed cognitive decrements. Complete tumor response was obtained with the two beams and was similar between e and pFLASH vs. e and pCONV. Tumor rejection was similar indicating that T-cell memory response is beam-type and dose-rate independent. Conclusion: Despite major differences in the temporal microstructure, this study shows that dosimetric standards can be established. The sparing of brain function and tumor control produced by the two beams were similar, suggesting that the most important physical parameter driving the FLASH effect is the overall time of exposure which should be in the range of hundreds of milliseconds for WBI in mice. In addition, we observed that immunological memory response is similar between electron and proton beams and is independent off the dose rate.

3.
Phys Med Biol ; 68(10)2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37084737

RESUMO

Background.At the Center for Proton Therapy at the Paul Scherrer Institute (PSI) the delivery of proton radiation is controlled via gas-based ionization chambers: the beam is turned off when a certain amount of preset charge has been collected. At low dose rates the charge collection efficiency in these detectors is unity, at ultra-high dose rates it is less due to induced charge recombination effects. If not corrected, the latter would lead to an overdosage.Purpose.In the scope of this work, we developed a novel approach to anin situcharge recombination correction for our dose defining detectors, when irradiated with a proton beam at ultra-high dose rates. This approach is based on the Two-Voltage-Method.Methods.We have translated this method to two separate devices operated simultaneously at different conditions. By doing so, the charge collection losses can be corrected directly and without the need for empirical correction values. This approach has been tested at ultra-high dose rates; proton beam was delivered by the COMET cyclotron to Gantry 1 at PSI.Results.We were able to correct the charge losses caused by recombination effects at local beam currents of approximately 700 nA (i.e. instantaneous dose rate of 3600 Gy s-1at isocenter). The corrected collected charges in our gaseous detectors were compared against recombination-free measurements with a Faraday cup. The ratio of both quantities shows no significant dose rate dependence within their respective combined uncertainties.Conclusions. Correcting recombination effects in our gas-based detectors with the novel method greatly eases the handling of Gantry 1 as 'FLASH test bench'. Not only is the application of a preset dose more accurate compared to using an empirical correction curve, also the re-determination of empirical correction curves in the case of a beam phase space change can be omitted.


Assuntos
Terapia com Prótons , Prótons , Radiometria/métodos , Terapia com Prótons/métodos , Ciclotrons , Radiação Ionizante
4.
Phys Med ; 104: 101-111, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36395638

RESUMO

PURPOSE: To characterize an experimental setup for ultra-high dose rate (UHDR) proton irradiations, and to address the challenges of dosimetry in millimetre-small pencil proton beams. METHODS: At the PSI Gantry 1, high-energy transmission pencil beams can be delivered to biological samples and detectors up to a maximum local dose rate of âˆ¼9000 Gy/s. In the presented setup, a Faraday cup is used to measure the delivered number of protons up to ultra-high dose rates. The response of transmission ion-chambers, as well as of different field detectors, was characterized over a wide range of dose rates using the Faraday cup as reference. RESULTS: The reproducibility of the delivered proton charge was better than 1 % in the proposed experimental setup. EBT3 films, Al2O3:C optically stimulated luminescence detectors and a PTW microDiamond were used to validate the predicted dose. Transmission ionization chambers showed significant volume ion-recombination (>30 % in the tested conditions) which can be parametrized as a function of the maximum proton current density. Over the considered range, EBT3 films, inorganic scintillator-based screens and the PTW microDiamond were demonstrated to be dose rate independent within ±3 %, ±1.8 % and ±1 %, respectively. CONCLUSIONS: Faraday cups are versatile dosimetry instruments that can be used for dose estimation, field detector characterization and on-line dose verification for pre-clinical experiments in UHDR proton pencil beams. Among the tested detectors, the commercial PTW microDiamond was found to be a suitable option to measure real time the dosimetric properties of narrow pencil proton beams for dose rates up to 2.2 kGy/s.


Assuntos
Prótons , Reprodutibilidade dos Testes
5.
Phys Med Biol ; 66(12)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33906166

RESUMO

Recently, proton therapy treatments delivered with ultra-high dose rates have been of high scientific interest, and the Faraday cup (FC) is a promising dosimetry tool for such experiments. Different institutes use different FC designs, and either a high voltage guard ring, or the combination of an electric and a magnetic field is employed to minimize the effect of secondary electrons. The authors first investigate these different approaches for beam energies of 70, 150, 230 and 250 MeV, magnetic fields between 0 and 24 mT and voltages between -1000 and 1000 V. When applying a magnetic field, the measured signal is independent of the guard ring voltage, indicating that this setting minimizes the effect of secondary electrons on the reading of the FC. Without magnetic field, applying the negative voltage however decreases the signal by an energy dependent factor up to 1.3% for the lowest energy tested and 0.4% for the highest energy, showing an energy dependent response. Next, the study demonstrates the application of the FC up to ultra-high dose rates. FC measurements with cyclotron currents up to 800 nA (dose rates of up to approximately 1000 Gy s-1) show that the FC is indeed dose rate independent. Then, the FC is applied to commission the primary gantry monitor for high dose rates. Finally, short-term reproducibility of the monitor calibration is quantified within single days, showing a standard deviation of 0.1% (one sigma). In conclusion, the FC is a promising, dose rate independent tool for dosimetry up to ultra-high dose rates. Caution is however necessary when using a FC without magnetic field, as a guard ring with high voltage alone can introduce an energy dependent signal offset.


Assuntos
Terapia com Prótons , Calibragem , Prótons , Radiometria , Reprodutibilidade dos Testes
6.
Phys Med ; 80: 111-118, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33137622

RESUMO

Boron carbide is a material proposed as an alternative to graphite for use as an energy degrader in proton therapy facilities, and is favoured due to its mechanical robustness and promise to give lower lateral scattering for a given energy loss. However, the mean excitation energy of boron carbide has not yet been directly measured. Here we present a simple method to determine the mean excitation energy by comparison with the relative stopping power in a water phantom, and from a comparison between experimental data and simulations we derive a value for it of 83.1 ± 2.8 eV suitable for use in Monte-Carlo simulation. This is consistent with the existing ICRU estimate (84.7 eV with 10-15% uncertainty) that is based on indirect Bragg additivity calculation, but it has a substantially smaller uncertainty. The method described can be readily applied to predict the ionisation loss of other boron carbide materials in which the atomic constituent ratio may vary, and allows this material to be reliably used as an alternative to graphite, diamond or beryllium.


Assuntos
Terapia com Prótons , Boro , Simulação por Computador , Método de Monte Carlo , Fenômenos Físicos
7.
Phys Med ; 76: 227-235, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32717702

RESUMO

INTRODUCTION: Cyclotron-based proton therapy facilities use an energy degrader of variable thickness to deliver beams of the different energies required by a patient treatment plan; scattering and straggling in the degrader give rise to an inherent emittance increase and subsequent particle loss in the downstream energy-selection system (ESS). Here we study alternative graphite degrader geometries and examine with Monte-Carlo simulations the induced emittance growth and consequent particle transmission. METHODS: We examined the conventional multiple-wedge degrader used in the Paul Scherrer Institute PROSCAN proton therapy system, the equivalent parallel-sided degrader, and a single block degrader of equivalent thickness. G4Beamline Monte-Carlo tracking of protons was benchmarked against measurements of the existing degrader for proton energies from 75 to 230 MeV, and used to validate simulations of the alternative geometries. RESULTS: Using a careful calculation of the beam emittance growth, we determined that a single-block degrader placed close to the collimators of the ESS is expected to deliver significantly larger transmission, up to 17% larger at 150 MeV. At the lowest deliverable of 75 MeV there is still a clear improvement in beam transmission. CONCLUSIONS: Whilst dose rates are not presently limited on the PROSCAN system at higher energies, a single-block degrader offers the ability to access either lower energies for treatment or a larger dose rate at 75 MeV in case transmission optimisation is desired. Single-block degraders should be considered for the delivery of low-energy protons from a cyclotron-based particle therapy system.


Assuntos
Grafite , Terapia com Prótons , Humanos , Método de Monte Carlo , Prótons
8.
Phys Med Biol ; 64(9): 095005, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30893664

RESUMO

The literature is controversial about the scan direction dependency of interplay effects in pencil beam scanning (PBS) treatment of moving targets. A directional effect is supported by many simulation studies, whereas the experimental data are mostly limited to simple geometries, not reflecting realistically clinical treatment plans. We have compared increasingly complex treatment fields, from a homogeneous single energy layer to a more modulated lung plan, under identical experimental settings, seeking evidence for differences in motion mitigation due to the selection of primary scanning direction. In total, 120 experimental samples were taken, combining two primary scan directions and three rescanning regimes with different motion scenarios. 4D dose distributions were measured in water with a moving ionisation chamber array and compared to those of a stationary delivery using 2D gamma analysis. Each plan has been verified twice for the same rescanning regime and motion scenario, changing the meandering direction in between to scan perpendicularly to, or along, the target motion. Additionally, machine log files of the lung plan, together with 4DCT data, were used to calculate the dose distribution that such deliveries would have produced in the patient. The primary meandering direction has a clear influence on measured dose distributions when considering a single energy layer. Introducing spot weight modulation and multiple energy layers however, makes the dynamic of interplay more complex and difficult to predict. Overall, gamma (3%/3 mm) differences between scanning along or orthogonal to the target motion follow a normal distribution [Formula: see text] when considering multiple motion scenarios and rescanning regimes. Nevertheless, data spread [Formula: see text] is significant enough such that, for individual experiments and set-ups, a dependency may be observed even if this is not a general result. Patient reconstructed doses follow the same trend, the two primary scan directions producing statistically insignificant differences in dose distributions in terms of conformity or homogeneity. Except for extremely simplified cases of mono-energetic and homogeneous treatment fields, the interplay effect has been found to be only marginally influenced by the choice of the primary scanning direction.


Assuntos
Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada Quadridimensional , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/fisiopatologia , Neoplasias Hepáticas/radioterapia , Movimento , Dosagem Radioterapêutica
9.
Phys Med Biol ; 63(14): 145006, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29911658

RESUMO

Therapeutic pencil beams are typically scanned using one of the following three techniques: spot scanning, raster scanning or line scanning. While providing similar dose distributions to the target, these three techniques can differ significantly in their delivery time sequence. Thus, we can expect differences in effectiveness and time efficiency when trying to mitigate interplay effects using rescanning. At the Paul Scherrer Institute, we are able to irradiate treatment plans using either of the three delivery techniques. Hence, we can compare them directly with identical underlying machine parameters such as energy switching time or minimum/maximum beam current. For this purpose, we selected three different liver targets, optimized plans for spots, and converted them to equivalent raster and line scanning plans. In addition to the scanning technique, we varied the underlying motion curve, starting phase, prescription dose and rescanning strategy, which resulted in a total of 1584 4D dose calculations and 49 measurements. They indicate that rescanning becomes effective when achieving a high number of rescans for every dose element. Fixed minimum spot weights for spot and raster scanning machines often hamper this. By introducing adaptive scaling of the beam current within iso-energy layers for line scanning, we can flexibly lower the minimum weight whenever required and achieve higher rescanning capability. Averaged over all scenarios studied, volumetric rescanning is significantly more effective than layered provided the same number of rescans are applied. Fast lateral scanning contributes to the efficiency of rescanning. We observed that in any given time window, we can always perform more rescans using raster or line scanning compared to spot scanning irradiations. Thus, we conclude that line scanning represents a promising technique for rescanning by combining both effectiveness and efficiency.


Assuntos
Neoplasias Hepáticas/radioterapia , Movimento , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Dosagem Radioterapêutica
10.
Phys Med Biol ; 62(15): 6126-6143, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28582266

RESUMO

Line scanning represents a faster and potentially more flexible form of pencil beam scanning than conventional step-and-shoot irradiations. It seeks to minimize dead times in beam delivery whilst preserving the possibility of modulating the dose at any point in the target volume. Our second generation proton gantry features irradiations in line scanning mode, but it still lacks a dedicated monitoring and validation system that guarantees patient safety throughout the irradiation. We report on its design and implementation in this paper. In line scanning, we steer the proton beam continuously along straight lines while adapting the speed and/or current frequently to modulate the delivered dose. We intend to prevent delivery errors that could be clinically relevant through a two-stage system: safety level 1 monitors the beam current and position every 10 µs. We demonstrate that direct readings from ionization chambers in the gantry nozzle and Hall probes in the scanner magnets provide required information on current and position, respectively. Interlocks will be raised when measured signals exceed their predefined tolerance bands. Even in case of an erroneous delivery, safety level 1 restricts hot and cold spots of the physically delivered fraction dose to ±[Formula: see text] (±[Formula: see text] of [Formula: see text] biologically). In safety level 2-an additional, partly redundant validation step-we compare the integral line profile measured with a strip monitor in the nozzle to a forward-calculated prediction. The comparison is performed between two line applications to detect amplifying inaccuracies in speed and current modulation. This level can be regarded as an online quality assurance of the machine. Both safety levels use devices and functionalities already installed along the beamline. Hence, the presented monitoring and validation system preserves full compatibility of discrete and continuous delivery mode on a single gantry, with the possibility of switching between modes during the application of a single field.


Assuntos
Terapia com Prótons/instrumentação , Cintilografia/instrumentação , Síncrotrons , Humanos , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...