Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3759, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355655

RESUMO

Adjuvant Temozolomide is considered the front-line Glioblastoma chemotherapeutic treatment; yet not all patients respond. Latest trends in clinical trials usually refer to Doxorubicin; yet it can lead to severe side-effects if administered in high doses. While Glioblastoma prognosis remains poor, little is known about the combination of the two chemotherapeutics. Patient-derived spheroids were generated and treated with a range of Temozolomide/Doxorubicin concentrations either as monotherapy or in combination. Optical microscopy was used to monitor the growth pattern and cell death. Based on the monotherapy experiments, we developed a probabilistic mathematical framework in order to describe the drug-induced effect at the single-cell level and simulate drug doses in combination assuming probabilistic independence. Doxorubicin was found to be effective in doses even four orders of magnitude less than Temozolomide in monotherapy. The combination therapy doses tested in vitro were able to lead to irreversible growth inhibition at doses where monotherapy resulted in relapse. In our simulations, we assumed both drugs are anti-mitotic; Temozolomide has a growth-arrest effect, while Doxorubicin is able to cumulatively cause necrosis. Interestingly, under no mechanistic synergy assumption, the in silico predictions underestimate the in vitro results. In silico models allow the exploration of a variety of potential underlying hypotheses. The simulated-biological discrepancy at certain doses indicates a supra-additive response when both drugs are combined. Our results suggest a Temozolomide-Doxorubicin dual chemotherapeutic scheme to both disable proliferation and increase cytotoxicity against Glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 866-869, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440528

RESUMO

Breast cancer and Glioblastoma brain cancer are severe malignancies with poor prognosis. In this study, primary Glioblastoma and secondary breast cancer spheroids are formed and treated with the well-known Temozolomide and Doxorubicin chemotherapeutics, respectively. High resolution imaging of both primary and secondary cancer cell spheroids is possible using a custom multi-angle Light Sheet Fluorescence Microscope. Such a technique is successful in realizing preclinical drug screening, while enables the discrimination among physiologic tumor parameters.


Assuntos
Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Neoplasias , Esferoides Celulares , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos
3.
Methods ; 136: 81-89, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29080740

RESUMO

We describe a computational method for accurate, quantitative tomographic reconstructions in Optical Projection Tomography, based on phase retrieval algorithms. Our method overcomes limitations imposed by light scattering in opaque tissue samples under the memory effect regime, as well as reduces artifacts due to mechanical movements, misalignments or vibrations. We make use of Gerchberg-Saxton algorithms, calculating first the autocorrelation of the object and then retrieving the associated phase under four numerically simulated measurement conditions. By approaching the task in such a way, we avoid the projection alignment procedure, exploiting the fact that the autocorrelation sinogram is always aligned and centered. We thus propose two new, projection-based, tomographic imaging flowcharts that allow registration-free imaging of opaque biological specimens and unlock three-dimensional tomographic imaging of hidden objects. Two main reconstruction approaches are discussed in the text, focusing on their efficiency in the tomographic retrieval and discussing their applicability under four different numerical experiments.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Tomografia/métodos , Algoritmos , Artefatos , Aumento da Imagem , Imagens de Fantasmas
4.
Sci Rep ; 7(1): 11854, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28928445

RESUMO

We present a new Phase-Retrieved Tomography (PRT) method to radically improve mesoscopic imaging at regimes beyond one transport mean-free-path and achieve high resolution, uniformly throughout the volume of opaque samples. The method exploits multi-view acquisition in a hybrid Selective Plane Illumination Microscope (SPIM) and Optical Projection Tomography (OPT) setup and a three-dimensional Gerchberg-Saxton phase-retrieval algorithm applied in 3D through the autocorrelation sinogram. We have successfully applied this innovative protocol to image optically dense 3D cell cultures in the form of tumor spheroids, highly versatile models to study cancer behavior and response to chemotherapy. We have thus achieved a significant improvement of resolution in depths not yet accessible with the currently used methods in SPIM/OPT, while overcoming all registration and alignment problems inherent to these techniques.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Neoplasias/patologia , Esferoides Celulares/patologia , Tomografia Óptica/métodos , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...