Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066830

RESUMO

Protein solubility is based on the compatibility of the specific protein surface with the polar aquatic environment. The exposure of polar residues to the protein surface promotes the protein's solubility in the polar environment. The aquatic environment also influences the folding process by favoring the centralization of hydrophobic residues with the simultaneous exposure to polar residues. The degree of compatibility of the residue distribution, with the model of the concentration of hydrophobic residues in the center of the molecule, with the simultaneous exposure of polar residues is determined by the sequence of amino acids in the chain. The fuzzy oil drop model enables the quantification of the degree of compatibility of the hydrophobicity distribution observed in the protein to a form fully consistent with the Gaussian 3D function, which expresses an idealized distribution that meets the preferences of the polar water environment. The varied degrees of compatibility of the distribution observed with the idealized one allow the prediction of preferences to interactions with molecules of different polarity, including water molecules in particular. This paper analyzes a set of proteins with different levels of hydrophobicity distribution in the context of the solubility of a given protein and the possibility of complex formation.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Agregados Proteicos , Proteínas Anticongelantes Tipo III/química , Proteínas de Fímbrias/química , Hemoglobinas/química , Humanos , Proteínas de Membrana/química , Modelos Moleculares , Domínios Proteicos , Solubilidade
2.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630137

RESUMO

The issue of changing the structure of globular proteins into an amyloid form is in the focus of researchers' attention. Numerous experimental studies are carried out, and mathematical models to define the essence of amyloid transformation are sought. The present work focuses on the issue of the hydrophobic core structure in amyloids. The form of ordering the hydrophobic core in globular proteins is described by a 3D Gaussian distribution analog to the distribution of hydrophobicity in a spherical micelle. Amyloid fibril is a ribbon-like micelle made up of numerous individual chains, each representing a flat structure. The distribution of hydrophobicity within a single chain included in the fibril describes the 2D Gaussian distribution. Such a description expresses the location of polar residues on a circle with a center with a high level of hydrophobicity. The presence of this type of order in the amyloid forms available in Preotin Data Bank (PDB) (both in proto- and superfibrils) is demonstrated in the present work. In this system, it can be assumed that the amyloid transformation is a chain transition from 3D Gauss ordering to 2D Gauss ordering. This means changing the globular structure to a ribbon-like structure. This observation can provide a simple mathematical model for simulating the amyloid transformation of proteins.


Assuntos
Proteínas Amiloidogênicas/química , Modelos Químicos , Conformação Proteica , Distribuição Normal , Dobramento de Proteína
3.
Acta Biochim Pol ; 66(4): 451-458, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747510

RESUMO

The fuzzy oil drop model suggests that the tertiary conformation of a protein - particularly a globular one - can be likened to a spherical micelle. During the folding process, hydrophilic residues are exposed on the surface, while hydrophobic residues are retained inside the protein. The resulting hydrophobicity distribution can be mathematically modeled as a 3D Gaussian. The fuzzy oil drop model is strikingly effective in explaining the properties of type II antifreeze proteins and fast-folding proteins, as well as a vast majority of autonomous protein domains. This work aims to determine whether similar mechanisms apply to other types of nonbonding interactions. Our analysis indicates that electrostatic and van der Waals forces do not conform to the Gaussian pattern. The study involves a reference protein (titin) which shows a high agreement between the observed distribution of hydrophobicity and the theoretical (Gaussian) distribution, a selection of amyloid structures derived from the Protein Data Bank, as well as transthyretin - a protein known for its susceptibility to amyloid transformation.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Dobramento de Proteína , Proteínas/química , Proteínas Amiloidogênicas/química , Humanos , Modelos Moleculares , Modelos Teóricos , Distribuição Normal , Pré-Albumina/química , Estrutura Terciária de Proteína
4.
Int J Mol Sci ; 20(18)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505841

RESUMO

Protein structure is the result of the high synergy of all amino acids present in the protein. This synergy is the result of an overall strategy for adapting a specific protein structure. It is a compromise between two trends: The optimization of non-binding interactions and the directing of the folding process by an external force field, whose source is the water environment. The geometric parameters of the structural form of the polypeptide chain in the form of a local radius of curvature that is dependent on the orientation of adjacent peptide bond planes (result of the respective Phi and Psi rotation) allow for a comparative analysis of protein structures. Certain levels of their geometry are the criteria for comparison. In particular, they can be used to assess the differences between the structural form of biologically active proteins and their amyloid forms. On the other hand, the application of the fuzzy oil drop model allows the assessment of the role of amino acids in the construction of tertiary structure through their participation in the construction of a hydrophobic core. The combination of these two models-the geometric structure of the backbone and the determining of the participation in the construction of the tertiary structure that is applied for the comparative analysis of biologically active and amyloid forms-is presented.


Assuntos
Amiloide/química , Modelos Moleculares , Dobramento de Proteína , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...