Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Osteoporos Int ; 35(1): 117-128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670164

RESUMO

This study utilized deep learning to classify osteoporosis and predict bone density using opportunistic CT scans and independently tested the models on data from different hospitals and equipment. Results showed high accuracy and strong correlation with QCT results, showing promise for expanding osteoporosis screening and reducing unnecessary radiation and costs. PURPOSE: To explore the feasibility of using deep learning to establish a model for osteoporosis classification and bone density value prediction based on opportunistic CT scans and to verify its generalization and diagnostic ability using an independent test set. METHODS: A total of 1219 cases of opportunistic CT scans were included in this study, with QCT results as the reference standard. The training set: test set: independent test set ratio was 703: 176: 340, and the independent test set data of 340 cases were from 3 different hospitals and 4 different CT scanners. The VB-Net structure automatic segmentation model was used to segment the trabecular bone, and DenseNet was used to establish a three-classification model and bone density value prediction regression model. The performance parameters of the models were calculated and evaluated. RESULTS: The ROC curves showed that the mean AUCs of the three-category classification model for categorizing cases into "normal," "osteopenia," and "osteoporosis" for the training set, test set, and independent test set were 0.999, 0.970, and 0.933, respectively. The F1 score, accuracy, precision, recall, precision, and specificity of the test set were 0.903, 0.909, 0.899, 0.908, and 0.956, respectively, and those of the independent test set were 0.798, 0.815, 0.792, 0.81, and 0.899, respectively. The MAEs of the bone density prediction regression model in the training set, test set, and independent test set were 3.15, 6.303, and 10.257, respectively, and the RMSEs were 4.127, 8.561, and 13.507, respectively. The R-squared values were 0.991, 0.962, and 0.878, respectively. The Pearson correlation coefficients were 0.996, 0.981, and 0.94, respectively, and the p values were all < 0.001. The predicted values and bone density values were highly positively correlated, and there was a significant linear relationship. CONCLUSION: Using deep learning neural networks to process opportunistic CT scan images of the body can accurately predict bone density values and perform bone density three-classification diagnosis, which can reduce the radiation risk, economic consumption, and time consumption brought by specialized bone density measurement, expand the scope of osteoporosis screening, and have broad application prospects.


Assuntos
Doenças Ósseas Metabólicas , Aprendizado Profundo , Osteoporose , Humanos , Densidade Óssea , Osteoporose/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos
2.
Int J Comput Assist Radiol Surg ; 16(12): 2235-2249, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34677748

RESUMO

PURPOSE: To establish machine learning(ML) models for the diagnosis of clinically significant prostate cancer (csPC) using multiparameter magnetic resonance imaging (mpMRI), texture analysis (TA), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) quantitative analysis and clinical parameters and to evaluate the stability of these models in internal and temporal validation. METHODS: The dataset of 194 men was split into training (n = 135) and internal validation (n = 59) cohorts, and a temporal dataset (n = 58) was used for evaluation. The lesions with Gleason score ≥ 7 were defined as csPC. Logistic regression (LR), stepwise regression (SR), classical decision tree (cDT), conditional inference tree (CIT), random forest (RF) and support vector machine (SVM) models were established by combining mpMRI-TA, DCE-MRI and clinical parameters and validated by internal and temporal validation using the receiver operating characteristic (ROC) curve and Delong's method. RESULTS: Eight variables were determined as important predictors for csPC, with the first three related to texture features derived from the apparent diffusion coefficient (ADC) mapping. RF, LR and SR models yielded larger and more stable area under the ROC curve values (AUCs) than other models. In the temporal validation, the sensitivity was lower than that of the internal validation (p < 0.05). There were no significant differences in specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV) and AUC (p > 0.05). CONCLUSIONS: Each machine learning model in this study has good classification ability for csPC. Compared with internal validation, the sensitivity of each machine learning model in temporal validation was reduced, but the specificity, accuracy, PPV, NPV and AUCs remained stable at a good level. The RF, LR and SR models have better classification performance in the imaging-based diagnosis of csPC, and ADC texture-related parameters are of the highest importance.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata , Humanos , Aprendizado de Máquina , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...