Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14123, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898093

RESUMO

Cytosolic Glycerol-3-phosphate dehydrogenase 1 (GPD1, EC 1.1.1.8) plays a pivotal role in regulating the Embden-Meyerhof glucose glycolysis pathway (E-M pathway), as well as in conditions such as Huntington's disease, cancer, and its potential role as a specific marker for Dormant Glioma Stem Cells. In this study, we conducted virtual screening using the ZINC database ( http://zinc.docking.org/ ) and the GPD1 structure to identify potential GPD1 modulators. The investigation involved screening active candidate ligands using ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) parameters, combined with molecular docking, pose analysis, and interaction analysis based on Lipinski and Veber criteria. Subsequently, the top 10 ligands were subjected to 200 ns all-atom molecular dynamics (M.D.) simulations, and binding free energies were calculated. The findings revealed that specific residues, namely TRP14, PRO94, LYS120, ASN151, THR264, ASP260, and GLN298, played a crucial role in ensuring system stability. Furthermore, through a comprehensive analysis involving molecular docking, molecular M.D., and DeLA-Drug, we identified 10 promising small molecules. These molecules represent potential lead compounds for developing effective therapeutics targeting GPD1-associated diseases, thereby contributing to a deeper understanding of GPD1-associated mechanisms. This study's significance lies in identifying key residues associated with GPD1 and discovering valuable small molecules, providing a foundation for further research and development.


Assuntos
Glicerolfosfato Desidrogenase , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Humanos , Ligantes , Glicerolfosfato Desidrogenase/metabolismo , Glicerolfosfato Desidrogenase/química , Ligação Proteica , Termodinâmica , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...