Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 390, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35922748

RESUMO

BACKGROUND: Soil salinization leads to a significant decline in crop yield and quality, including licorice, an important medicinal cash crop. Studies have proofed that the application of exogenous silicon can significantly improve the ability of licorice to resist salt stress, however, few studies concentrated on the effects of foliar silicon application on the morphology, physiological characteristics, and anatomical structure of licorice leaves under salt stress. In this study, the effects of Si (K2SiO3) on the structural and physiological characteristics of Glycyrrhiza uralensis Fisch. and G. inflata Bat. leaves under different salt concentrations (medium- and high-salt) were studied. RESULTS: Compared with the control (without salt), the plant height, total dry weight, leaf area, leaf number, relative water content, xylem area, phloem area, ratio of palisade to spongy tissue, gas exchange parameters, and photosynthetic pigment content of both licorice varieties were significantly reduced under high-salt (12S) conditions. However, the thickness of the leaf, palisade tissue, and spongy tissue increased significantly. Applying Si to the leaf surface increased the area of the vascular bundle, xylem, and parenchyma of the leaf's main vein, promoted water transportation, enhanced the relative leaf water content, and reduced the decomposition of photosynthetic pigments. These changes extended the area of photosynthesis and promoted the production and transportation of organic matter. G. uralensis had a better response to Si application than did G. inflata. CONCLUSIONS: In conclusion, foliar application of Si can improve water absorption, enhance photosynthesis, improve photosynthetic capacity and transpiration efficiency, promote growth and yield, and alleviate the adverse effects of salt stress on the leaf structure of the two kinds of licorice investigated.


Assuntos
Glycyrrhiza , Folhas de Planta , Silício , Glycyrrhiza/efeitos dos fármacos , Glycyrrhiza/fisiologia , Glycyrrhiza uralensis/efeitos dos fármacos , Glycyrrhiza uralensis/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Estresse Salino , Silício/farmacologia , Água/metabolismo
2.
PeerJ ; 10: e13552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35673389

RESUMO

Background: Populus euphratica is one of the most ancient and primitive tree species of Populus spp and plays an important role in maintaining the ecological balance in desert areas. To decipher the diversity, community structure, and relationship between rhizosphere fungi and environmental factors at different growth stages of P. euphratica demands an in-depth investigation. Methods: In this study, P. euphratica at different growth stages (young, medium, overripe, and decline periods) was selected as the research object, based on the determination of the physicochemical properties of its rhizosphere soil, the fungal community structure and diversity of P. euphratica and their correlation with soil physicochemical properties were comprehensively analyzed through high-throughput sequencing technology (internal transcribed spacer (ITS)) and bioinformatics analysis methods. Results: According to the analysis of OTU annotation results, the rhizosphere soil fungal communities identified in Populus euphratica were categorized into10 phyla, 36 classes, 77 orders, 165 families, 275 genera and 353 species. The alpha diversity analysis showed that there was no obvious change between the different growth stages, while beta diversity analysis showed that there were significantly differences in the composition of rhizosphere soil fungal communities between mature and overripe trees (R 2 = 0.31, P = 0.001), mature and deadwood (R 2 = 0.28, P = 0.001). Ascomycota and Basidiomycota were dominant phyla in the rhizosphere fungal community and the dominant genera were Geopora, Chondrostereum and unidentified_Sordariales_sp. The relative abundance of the top ten fungi at each classification level differed greatly in different stages. Canonical correspondence analysis (CCA) and Spearman's correlation analysis showed that conductivity (EC) was the main soil factor affecting the composition of Populus euphratica rhizosphere soil fungal community (P < 0.01), followed by total dissolvable salts (TDS) and available potassium (AK) (P < 0.05). Conclusions: Our data revealed that the rhizosphere fungal communities at the different growth stages of P. euphratica have differences, conductivity (EC) was the key factor driving rhizosphere fungi diversity and community structure, followed by total dissolvable salts (TDS) and available potassium (AK).


Assuntos
Agaricales , Micobioma , Populus , Humanos , Rizosfera , Rios , Sais , Solo/química , Árvores , Sequenciamento de Nucleotídeos em Larga Escala
3.
J Environ Manage ; 316: 115288, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35594824

RESUMO

The ecological environment of the Gurbantünggüt desert-oasis ecotone is extremely fragile. Ephemeral plants are an important part of the ecosystem and play an essential role in maintaining the ecological stability of the ecotone. However, few studies have focused on the growth, soil quality and system sustainability of ephemeral plants in different soils. This study was based on two typical soil types (grey desert soil, GS; aeolian soil, AS) in the aforementioned ecotone, considered four ephemeral plants (Tetracme recurvata, TR; Tetracme contorta, TC; Malcolmia scorpioides, MS; Isatis violascens, IV) as the research object, analysed plant characteristics and soil properties, and comprehensively evaluated the ephemeral plant system by analysing the soil quality index (SQI) and sustainability index (SI). The results showed that there were significant differences in biomass and nutrient accumulation between different ephemeral plants, which were significantly affected by soil types. In the two examined soils (GS and AS), the contents of nutrients and microbial carbon (MBC) and nitrogen (MBN) in the rhizosphere soil were higher than those in the bare soil (BS), and there were significant differences among different species. The key soil factors related to total biomass in GS and AS were also different. The SQI of ephemeral plants was significantly higher than that of the BS, and varied with soil types and plant species. The species with the highest SQI of the key factor data set in GS and AS were IV and TR, respectively. The SI analysis indicated that IV in GS and MS and IV in AS were sustainable, and the plant properties can be better used to assess the sustainability of ephemeral plant systems. In conclusion, ephemeral plants improved the soil quality and system sustainability of the study ecotone. Further, the growth of ephemeral plant and rhizosphere soil properties vary with plant species and soil types; thus, selecting suitable species for large-scale planting in different soil types is of great significance for improving the ecological stability of the ecotone.


Assuntos
Brassicaceae , Solo , Biomassa , China , Ecossistema , Nitrogênio/análise , Plantas , Microbiologia do Solo
4.
Sci Rep ; 12(1): 5089, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332196

RESUMO

Silicon (Si) effectively alleviates the effects of salt stress in plants and can enhance salt tolerance in liquorice. However, the mechanisms by which Si improved salt tolerance in liquorice and the effects of foliar application of Si on different liquorice species under salt stress are not fully understood. We investigated the effects of foliar application of Si on the growth, physiological and biochemical characteristics, and ion balance of two liquorice species, Glycyrrhiza uralensis and G. inflata. High salt stress resulted in the accumulation of a large amount of Na+, decreased photosynthetic pigment concentrations, perturbed ion homeostasis, and eventually inhibited both liquorice species growth. These effects were more pronounced in G. uralensis, as G. inflata is more salt tolerant than G. uralensis. Foliar application of Si effectively reduced the decomposition of photosynthetic pigments and improved gas exchange parameters, thereby promoting photosynthesis. It also effectively inhibited lipid peroxidation and leaf electrolyte leakage and enhanced osmotic adjustment of the plants. Furthermore, Si application increased the K+ concentration and reduced Na+ absorption, transport, and accumulation in the plants. The protective effects of Si were more pronounced in G. uralensis than in G. inflata. In conclusion, Si reduces Na+ absorption, improves ion balance, and alleviates the negative effects of salt stress in the two liquorice species studied, but the effect is species dependent. These findings may help to develop novel strategies for protecting liquorice plants against salt stress and provide a theoretical basis for the evaluation of salt tolerance and the scientific cultivation of liquorice.


Assuntos
Glycyrrhiza , Silício , Homeostase , Íons/farmacologia , Folhas de Planta , Estresse Salino , Tolerância ao Sal , Silício/farmacologia , Sódio/farmacologia
5.
PeerJ ; 10: e12928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35190786

RESUMO

Long-term and widespread cotton production in Xinjiang, China, has resulted in significant soil degradation, thereby leading to continuous cropping obstacles; cotton stalk biochar (CSB) addition may be an effective countermeasure to this issue, with effects that are felt immediately by root systems in direct contact with the soil. In this study, we assess the effects of different CSB application rates on soil nutrient contents, root morphology, and root physiology in two soil types commonly used for cotton production in the region. Compared with CK (no CSB addition), a 1% CSB addition increased total nitrogen (TN), available phosphorus (AP), and organic matter (OM) by 13.3%, 7.2%, and 50% in grey desert soil, respectively , and 36.5%, 19.9%, and 176.4%, respectively, in aeolian sandy soil. A 3% CSB addition increased TN, AP, and OM by 38.8%, 23.8%, and 208.1%, respectively, in grey desert soil, and 36%, 13%, and 183.2%, respectively, in aeolian sandy soil. Compared with the aeolian sandy soil, a 1% CSB addition increased TN, OM, and AP by 95%, 94.8%, and 33.3%, respectively, in the grey desert soil , while in the same soil 3% CSB addition increased TN, OM, and AP by 108%, 21.1%, and 73.9%, respectively. In the grey desert soil, compared with CK, a 1% CSB application increased the root length (RL) (34%), specific root length (SRL) (27.9%), and root volume (RV) (32.6%) during the bud stage, increased glutamine synthetase (GS) (13.9%) and nitrate reductase (NR) activities (237%), decreased the RV (34%) and average root diameter (ARD) (36.2%) during the harvesting stage. A 3% CSB addition increased the RL (44%), SRL (20%), and RV (41.2%) during the bud stage and decreased the RV (29%) and ARD (27%) during the harvesting stage. In the aeolian sandy soil, 1% CSB increased the RL (38.3%), SRL (73.7%), and RV (17%), while a 3% caused a greater increase in the RL (55%), SRL (89%), RV (28%), soluble sugar content (128%), and underground biomass (33.8%). Compared with the grey desert soil, a 1% CSB addition increased the RL (48.6%), SRL (58%), and RV (18.6%) in the aeolian sandy soil, while a 3% further increased the RL (54.8%), SRL (84.2%), RV (21.9%), and soluble sugar content (233%). The mechanisms by which CSB addition improves the two soils differ: root morphology changed from coarse and short to fine and long in the grey desert soil, and from fine and long to longer in the aeolian sandy soil. Overall, a 3% CSB addition may be a promising and sustainable strategy for maintaining cotton productivity in aeolian sandy soil in the Xinjiang region.


Assuntos
Carvão Vegetal , Solo , Biomassa , Areia , China , Nitrogênio/análise , Fósforo/análise
6.
PeerJ ; 9: e12105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589303

RESUMO

Tamarix is a dominant species in the Tarim River Basin, the longest inland river in China. Tamarix plays an important role in the ecological restoration of this region. In this study, to investigate the soil bacterial community diversity in Tamarix shrubs, we collected soil samples from the inside and edge of the canopy and the edge of nebkhas and non-nebkhas Tamarix shrubs located near the Yingsu section in the lower reaches of Tarim River. High throughput sequencing technology was employed to discern the composition and function of soil bacterial communities in nebkhas and non-nebkhas Tamarix shrubs. Besides, the physicochemical properties of soil and the spatial distribution characteristics of soil bacteria and their correlation were analyzed. The outcomes of this analysis demonstrated that different parts of Tamarix shrubs had significantly different effects on soil pH, total K (TK), available K (AK), ammonium N (NH4 +), and available P (AP) values (P < 0.05), but not on soil moisture (SWC), total salt (TDS), electrical conductivity (EC), organic matter (OM), total N (TN), total P (TP), and nitrate N (NO3 -) values. The soil bacterial communities identified in Tamarix shrubs were categorized into two kingdoms, 71 phyla, 161 classes, 345 orders, 473 families, and 702 genera. Halobacterota, unidentified bacteria, and Proteobacteria were found to be dominant phyla. The correlation between the soil physicochemical factors and soil bacterial community was analyzed, and as per the outcomes OM, AK, AP, EC, and NH4 + were found to primarily affect the structure of the soil bacterial community. SWC, TK and pH were positively correlated with each other, but negatively correlated with other soil factors. At the phyla level, a significantly positive correlation was observed between the Halobacterota and AP, OM as well as Bacteroidota and AK (P < 0.01), but a significantly negative correlation was observed between the Chloroflexi and AK, EC (P < 0.01). The PICRUSt software was employed to predict the functional genes. A total of 6,195 KEGG ortholog genes were obtained. The function of soil bacteria was annotated, and six metabolic pathways in level 1, 41 metabolic pathways in level 2, and 307 metabolic pathways in level 3 were enriched, among which the functional gene related to metabolism, genetic information processing, and environmental information processing was found to have the dominant advantage. The results showed that the nebkhas and canopy of Tamarix shrubs had a certain enrichment effect on soil nutrients content, and bacterial abundance and significant effects on the structure and function of the soil bacterial community.

7.
Front Plant Sci ; 12: 708709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069610

RESUMO

Glycyrrhiza uralensis is a valuable medicinal legume, which occurs widely in arid and semi-arid regions. G. uralensis demand has risen steeply due to its high medical and commercial value. Interpret genome-wide information can stimulate the G. uralensis development as far as its increased bioactive compound levels, and plant yield are concerned. In this study, leaf nutrient concentration and photosynthetic chlorophyll index of G. uralensis were evaluated to determine the G. uralensis growth physiology in three habitats. We observed that G. uralensis nutrient levels and photosynthesis differed significantly in three regions (p < 0.05). Whole-genome re-sequencing of the sixty G. uralensis populations samples from different habitats was performed using an Illumina HiSeq sequencing platform to elucidate the distribution patterns, population evolution, and genetic diversity of G. uralensis. 150.06 Gb high-quality clean data was obtained after strict filtering. The 895237686 reads were mapped against the reference genome, with an average 89.7% mapping rate and 87.02% average sample coverage rate. A total of 6985987 SNPs were identified, and 117970 high-quality SNPs were obtained after filtering, which were subjected to subsequent analysis. Principal component analysis (PCA) based on interindividual SNPs and phylogenetic analysis based on interindividual SNPs showed that the G. uralensis samples could be categorized into central, southern, and eastern populations, which reflected strong genetic differentiation due to long periods of geographic isolation. In this study, a total of 131 candidate regions were screened, and 145 candidate genes (such as Glyur001802s00036258, Glyur003702s00044485, Glyur001802s00036257, Glyur007364s00047495, Glyur000028s00003476, and Glyur000398s00034457) were identified by selective clearance analysis based on Fst and θπ values. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed significant enrichment of 110 GO terms including carbohydrate metabolic process, carbohydrate biosynthetic process, carbohydrate derivative biosynthetic process, and glucose catabolic process (p < 0.05). Alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, and fatty acid degradation pathways were significantly enriched (p < 0.05). This study provides information on the genetic diversity, genetic structure, and population adaptability of the medicinal legumes, G. uralensis. The data obtained in this study provide valuable information for plant development and future optimization of breeding programs for functional genes.

8.
Sci Rep ; 10(1): 4718, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170084

RESUMO

Organic manure and biochar amendments have been used in agriculture to improve soil fertility and enhance crop productivity. Plant roots play an important role in the functionality of individual plants, and although the addition of organic manure and biochar reportedly affect roots, it remains unclear how root morphology and physiology respond. We conducted a field experiment to test the hypothesis that organic manure combined with biochar amendment could also enhance the productivity of continuous cropping systems in Xinjiang cotton plantations. Different levels of organic manure and biochar were applied. Organic manure and biochar significantly affected root morphology and physiology by improving soil nutrients. In the absence of biochar, organic manure amendment increased Root TTC reducing capacity, glutamine synthetase and nitrate reductase activity. Furthermore, morphological and physiological parameters peaked with 6% organic manure combined with 1% biochar. A significant increase in root physiology was recognized with an increase in soil nutrient content at the bud stage and a negative relationship between root physiology and soil total K content at the harvesting stage. Thus, our results indicate that organic manure combined with biochar positively influenced cotton roots, and therefore should be used to improve root health in continuous cropping systems.


Assuntos
Carvão Vegetal , Produção Agrícola/métodos , Gossypium/crescimento & desenvolvimento , Esterco , Raízes de Plantas/crescimento & desenvolvimento , Solo , China , Glutamato-Amônia Ligase/metabolismo , Gossypium/anatomia & histologia , Gossypium/metabolismo , Gossypium/fisiologia , Nitrato Redutase/metabolismo , Nutrientes/metabolismo , Fenômenos Fisiológicos da Nutrição , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...