Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028030

RESUMO

The advancement of gold nanoclusters (Au NCs) has given rise to a new era in fabricating functional materials due to their controllable morphology, stable optical properties, and excellent biocompatibility. Assemblies based on Au NCs demonstrate significant potentiality in constructing multiple structures as acceptable agents in applications such as sensing, imaging technology, and drug delivery systems. In addition, the assembled strategies illustrate the integration mechanism between each component while facing material requirement. It is necessary to provide supplementary and comprehensive reviews on the assembled functional structures (based Au NCs), which hold promise for applications and could expand their functional range and potential applications. This review focuses on the assembled structures of Au NCs in combination with metals, metal oxides, and non-metal materials, which are intricately arranged through various interaction forces including covalent bonds and metal coordination, resulting in a diverse array of multifunctional Au NC assemblies. These assemblies have widespread applications in fields such as biological imaging, drug delivery, and optical devices. The review concludes by highlighting the challenges and future prospects of Au NC assemblies, emphasizing the importance of continued research to advance nanomaterial assembly innovation.

2.
Nanoscale ; 15(28): 11801-11812, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37417923

RESUMO

Copper (Cu) is an inexpensive transition metal on Earth, exhibiting high catalytic activity due to its rich d-electron configuration and variable oxidation states. Cu-based biological alloys and nanocomposites have emerged as a prominent research area. Under specific synthesis conditions, alloys or nanocomposites formed by Cu with other metals demonstrate excellent enzyme-like and sensing activities. These advanced materials offer significant advantages over artificial enzymes in enzymatic applications, including high stability, simple synthesis, flexible catalytic performance, and ease of preservation. In addition, various types of sensors have been designed based on the unique electrochemical properties exhibited by these alloys and nanocomposites as well as their specific reactions with the target substances. These sensors possess advantages such as stability, high efficiency, a broad detection range, low detection limits, and high sensitivity. In this review, we summarize the current research status of Cu-based biological alloys and nanocomposites in enzyme-like applications and sensing applications. Based on this, we introduce the diverse enzyme-like activities exhibited by Cu-based nanozymes prepared under different synthesis conditions and their applications in areas such as biosensing, cancer treatment, and antibacterial therapy. Furthermore, we provide an overview of the applications of Cu-based alloys and nanocomposites in the field of sensing based on their enzyme-like activity or chemical activities. These sensors have been widely employed in biomedical detection, environmental hazardous substance monitoring, and food safety testing. Challenges and prospects faced by Cu-based alloys and nanocomposites are also highlighted for future works.


Assuntos
Técnicas Biossensoriais , Nanocompostos , Cobre/química , Ligas , Nanocompostos/química , Metais/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...