Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000932

RESUMO

This paper proposed a fine dust detection system using time-interleaved counters in which surface acoustic wave (SAW) sensors changed the resonance point characteristic. When fine dust was applied to the SAW sensor, the resonance point decreased. The SAW oscillator made of the SAW sensor and radio frequency (RF) amplifier generated an oscillation frequency that was the same as the resonance frequency. The oscillation frequency was transferred to digital data by a 20-bit asynchronous counter. This system has two channels: a sensing channel and a reference channel. Each channel has a SAW oscillator and a 20-bit asynchronous counter. The difference of the two channel counter results is the frequency difference. Through this, it is possible to know whether fine dust adheres to the SAW sensor. The proposed circuit achieved 0.95 ppm frequency resolution when it was operated at a frequency of 460 MHz. This circuit was implemented in a TSMC 130 nm CMOS process.

2.
Sensors (Basel) ; 23(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37300006

RESUMO

This paper presents a 5.8 GHz differential cascode power amplifier for an over-the-air wireless power transfer application. Over-the-air wireless power transfer provides a variety of benefits in several applications such as the Internet of Things and medical implantation applications. The proposed PA features two fully differentially active stages with a custom-designed transformer to provide a single-ended output. The custom-made transformer shows a high quality factor, as high as 11.6 and 11.2 for the primary and secondary sides at 5.8 GHz. Fabricated using a standard 180 nm CMOS process, the amplifier achieves input and output matching of -14.7 dB and -29.7 dB, respectively. To achieve a high power level and efficiency, accurate optimization through power matching, Power Added Efficiency (PAE), and the design of the transformer are carried out while the supply voltage is limited to 1.8 V. Measurement results show a 20 dBm output power with a PAE as high as 32.5%, which makes the PA suitable for application, and it can be implanted while arrayed with various antenna arrays. Finally, a FOM is introduced to compare the performance of the work with similar works in the literature.


Assuntos
Próteses e Implantes , Tecnologia sem Fio , Desenho de Equipamento , Amplificadores Eletrônicos , Fontes de Energia Elétrica
3.
Sensors (Basel) ; 23(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36991734

RESUMO

This paper proposes a high-gain low-noise current signal detection system for biosensors. When the biomaterial is attached to the biosensor, the current flowing through the bias voltage is changed so that the biomaterial can be sensed. A resistive feedback transimpedance amplifier (TIA) is used for the biosensor requiring a bias voltage. Current changes in the biosensor can be checked by plotting the current value of the biosensor in real time on the self-made graphical user interface (GUI). Even if the bias voltage changes, the input voltage of the analog to digital converter (ADC) does not change, so it is designed to plot the current of the biosensor accurately and stably. In particular, for multi-biosensors with an array structure, a method of automatically calibrating the current between biosensors by controlling the gate bias voltage of the biosensors is proposed. Input-referred noise is reduced using a high-gain TIA and chopper technique. The proposed circuit achieves 1.8 pArms input-referred noise with a gain of 160 dBΩ and is implemented in a TSMC 130 nm CMOS process. The chip area is 2.3 mm2, and the power consumption of the current sensing system is 12 mW.


Assuntos
Técnicas Biossensoriais , Ruído , Retroalimentação
4.
Sensors (Basel) ; 22(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36236315

RESUMO

This paper presents an on-chip fully integrated analog front-end (AFE) with a non-coherent digital binary phase-shift keying (DBPSK) demodulator suitable for short-range magnetic field wireless communication applications. The proposed non-coherent DBPSK demodulator is designed based on using comparators to digitize the received differential analog BPSK signal. The DBPSK demodulator does not need any phase-lock loop (PLL) to detect the data and recover the clock. Moreover, the proposed demodulator provides the detected data and the recovered clock simultaneously. Even though previous studies have offered the basic structure of the AFEs, this work tries to amplify and generate the required differential BPSK signal without missing data and clock throughout the AFE, while a low voltage level signal is received at the input of the AFE. A DC-offset cancellation (DCOC), a cascaded variable gain amplifier (VGA), and a single-to-differential (STOD) converter are employed to construct the implemented AFE. The simulation results indicate that the AFE provides a dynamic range of 0 dB to 40 dB power gain with 2 dB resolution. Measurement results show the minimum detectable voltage at the input of AFE is obtained at 20 mV peak-to-peak. The AFE and the proposed DBSPK demodulator are analyzed and fabricated in a 130 nm Bipolar-CMOS-DMOS (BCD) technology to recover the maximum data rate of 32 kbps where the carrier frequency is 128 kHz. The implemented DCOC, cascaded VGA, STOD, and the demodulator occupy 0.15 mm2, 0.063 mm2, 0.045 mm2, and 0.03 mm2 of area, respectively. The AFE and the demodulator consume 2.9 mA and 0.15 mA of current from an external 5 V power supply, respectively.

5.
Sensors (Basel) ; 22(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684660

RESUMO

This paper presents a multi-gain radio frequency (RF) front-end low noise amplifier (LNA) utilizing a multi-core based on the source degeneration topology. The LNA can cover a wide range of input and output frequency matching by using a receiver (RX) switch at the input and a capacitor bank at the output of the LNA. In the proposed architecture here, to avoid the saturation of RX chain, 12 gain steps including positive, 0 dB, and negative power gains are controlled by a mobile industry processor interface (MIPI). The multi-core architecture offers the ability to control the power consumption over different gain steps. In order to avoid the phase discontinuity, the negative gain steps are provided using an active amplification and T-type attenuation path that keeps the phase discontinuity below ±5 degrees between two adjacent power gain steps. Using the multi-core structure, the power consumption is optimized in different power gains. The structure is enhanced with the adaptive variable cores and reactance parameters to maintain different power consumption for different gain steps and remain the output matching in an acceptable operating range. Furthermore, auxiliary linearization circuitries are added to improve the input third intercept point (IIP3) performance of the LNA. The chip is fabricated in 65 nm complementary metal-oxide semiconductor (CMOS) silicon on insulator (SOI) process and the die area is 0.308 mm2. The proposed architecture achieves the IIP3 performance of -10.2 dBm and 8.6 dBm in the highest and lowest power gains, which are 20.5 dB and -11 dB, respectively. It offers the noise figure (NF) performance of 1.15 dB in the highest power gain while it reaches 14 dB when the power gain is -11 dB. The LNA consumes 16.8 mA and 1.33 mA current from a 1 V power supply that is provided by an on-chip low-dropout (LDO) when it operates at the highest and lowest gains, respectively.

6.
Sensors (Basel) ; 22(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746337

RESUMO

This paper presents an on-chip implementation of an analog processor-in-memory (PIM)-based convolutional neural network (CNN) in a biosensor. The operator was designed with low power to implement CNN as an on-chip device on the biosensor, which consists of plates of 32 × 32 material. In this paper, 10T SRAM-based analog PIM, which performs multiple and average (MAV) operations with multiplication and accumulation (MAC), is used as a filter to implement CNN at low power. PIM proceeds with MAV operations, with feature extraction as a filter, using an analog method. To prepare the input feature, an input matrix is formed by scanning a 32 × 32 biosensor based on a digital controller operating at 32 MHz frequency. Memory reuse techniques were applied to the analog SRAM filter, which is the core of low power implementation, and in order to accurately grasp the MAC operational efficiency and classification, we modeled and trained numerous input features based on biosignal data, confirming the classification. When the learned weight data was input, 19 mW of power was consumed during analog-based MAC operation. The implementation showed an energy efficiency of 5.38 TOPS/W and was differentiated through the implementation of 8 bits of high resolution in the 180 nm CMOS process.


Assuntos
Técnicas Biossensoriais , Redes Neurais de Computação , Aprendizagem
7.
Sensors (Basel) ; 22(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35591183

RESUMO

This paper presents a digital power amplifier (DPA) with a 43-dB dynamic range and 0.5-dB/step gain steps for a narrow-band Internet of Things (NBIoT) transceiver application. The proposed DPA is implemented in a dual-band architecture for both the low band and high band of the frequency coverage in an NBIoT application. The proposed DPA is implemented in two individual paths, power amplification, and power attenuation, to provide a wide range when both paths are implemented. To perform the fine control over the gain steps, ten fully differential cascode power amplifier cores, in parallel with a binary sizing, are used to amplify power and enable signals and provide fine gain steps. For the attenuation path, ten steps of attenuated signal level are provided which are controlled with ten power cores, similar to the power amplification path in parallel but with a fixed, small size for the cores. The proposed implementation is finalized with output custom-made baluns at the output. The technique of using parallel controlled cores provides a fine power adjustability by using a small area on the die where the NBIoT is fabricated in a 65-nm CMOS technology. Experimental results show a dynamic range of 47 dB with 0.5-dB fine steps are also available.

8.
Sensors (Basel) ; 22(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408074

RESUMO

This paper presents a register-transistor level (RTL) based convolutional neural network (CNN) for biosensor applications. Biosensor-based diseases detection by DNA identification using biosensors is currently needed. We proposed a synthesizable RTL-based CNN architecture for this purpose. The adopted technique of parallel computation of multiplication and accumulation (MAC) approach optimizes the hardware overhead by significantly reducing the arithmetic calculation and achieves instant results. While multiplier bank sharing throughout the convolutional operation with fully connected operation significantly reduces the implementation area. The CNN model is trained in MATLAB® on MNIST® handwritten dataset. For validation, the image pixel array from MNIST® handwritten dataset is applied on proposed RTL-based CNN architecture for biosensor applications in ModelSim®. The consistency is checked with multiple test samples and 92% accuracy is achieved. The proposed idea is implemented in 28 nm CMOS technology. It occupies 9.986 mm2 of the total area. The power requirement is 2.93 W from 1.8 V supply. The total time taken is 8.6538 ms.


Assuntos
Algoritmos , Técnicas Biossensoriais , Computadores , Redes Neurais de Computação
9.
Sensors (Basel) ; 22(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408273

RESUMO

In this paper, a self-threshold voltage (Vth) compensated Radio Frequency to Direct Current (RF-DC) converter operating at 900 MHz and 2.4 GHz is proposed for RF energy harvesting applications. The threshold voltage of the rectifying devices is compensated by the bias voltage generated by the auxiliary transistors and output DC voltage. The auxiliary transistors compensate the threshold voltage (Vth) of the PMOS rectifying device while the threshold voltage (Vth) of the NMOS rectifying device is compensated by the output DC voltage. The proposed RF-DC converter was implemented in 180 nm Complementary Metal-Oxide Semiconductor (CMOS) technology. The experimental results show that the proposed design achieves better performance at both 900 MHz and 2.4 GHz frequencies in terms of PCE, output voltage, sensitivity, and effective area. The peak power conversion efficiency (PCE) of 38.5% at -12 dBm across a 1 MΩ load for 900 MHz frequency was achieved. Similarly, for 2.4 GHz frequency, the proposed circuit achieves a peak PCE of 26.5% at -6 dBm across a 1 MΩ load. The proposed RF-DC converter circuit shows a sensitivity of -20 dBm across a 1 MΩ load and produces a 1 V output DC voltage.

10.
Sensors (Basel) ; 22(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35336447

RESUMO

This paper presents a Dual-Port-15-Throw (DP15T) antenna switch module (ASM) Radio Frequency (RF) switch implemented by a branched antenna technique which has a high linearity for wireless communications and various frequency bands, including a low- frequency band of 617-960 MHz, a mid-frequency band of 1.4-2.2 GHz, and a high-frequency band of 2.3-2.7 GHz. To obtain an acceptable Insertion Loss (IL) and provide a consistent input for each throw, a branched antenna technique is proposed that distributes a unified magnetic field at the inputs of the throws. The other role of the proposed antenna is to increase the inductance effects for the closer ports to the antenna pad in order to decrease IL at higher frequencies. The module is enhanced by two termination modes for each antenna path to terminate the antenna when the switch is not operating. The module is fabricated in the silicon-on-insulator CMOS process. The measurement results show a maximum IMD2 and IMD3 of -100 dBm, while for the second and third harmonics the maximum value is -89 dBc. The module operates with a maximum power handling of 35 dBm. Experimental results show a maximum IL of 0.34 and 0.92 dB and a minimum isolation of 49 dB and 35.5 dB at 0.617 GHz and 2.7 GHz frequencies, respectively. The module is implemented in a compact way to occupy an area of 0.74 mm2. The termination modes show a second harmonic of 75 dBc, which is desirable.

11.
Sensors (Basel) ; 22(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35062467

RESUMO

This paper presents a fast-switching Transmit/Receive (T/R) Single-Pole-Double-Throw (SPDT) Radio Frequency (RF) switch. Thorough analyses have been conducted to choose the optimum number of stacks, transistor sizes, gate and body voltages, to satisfy the required specifications. This switch applies six stacks of series and shunt transistors as big as 3.9 mm/160 nm and 0.75 mm/160 nm, respectively. A negative charge pump and a voltage booster generate the negative and boosted control voltages to improve the harmonics and to keep Inter-Modulation Distortion (IMD) performance of the switch over 100 dBc. A Low Drop-Out (LDO) regulator limits the boosted voltage in Absolute Maximum Rating (AMR) conditions and improves the switch performance for Process, Voltage and Temperature (PVT) variations. To reduce the size, a dense custom-made capacitor consisting of different types of capacitors has been presented where they have been placed over each other in layout considering the Design Rule Checks (DRC) and applied in negative charge pump, voltage booster and LDO. This switch has been fabricated and tested in a 90 nm Silicon-on-Insulator (SOI) process. The second and third IMD for all specified blockers remain over 100 dBc and the switching time as fast as 150 ns has been achieved. The Insertion Loss (IL) and isolation at 2.7 GHz are -0.17 dB and -33 dB, respectively. This design consumes 145 uA from supply voltage range of 1.65 V to 1.95 V and occupies 440 × 472 µm2 of die area.

12.
Sensors (Basel) ; 21(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34960433

RESUMO

This paper presents and discusses a Low-Band (LB) Low Noise Amplifier (LNA) design for a diversity receive module where the application is for multi-mode cellular handsets. The LB LNA covers the frequency range between 617 MHz to 960 MHz in 5 different frequency bands and a 5 Pole Single Throw (5PST) switch selects the different frequency bands where two of them are for the main and three for the auxiliary bands. The presented structure covers the gain modes from -12 to 18 dB with 6 dB gain steps where each gain mode has a different current consumption. In order to achieve the Noise Figure (NF) specifications in high gain modes, we have adopted a cascode Common-Source (CS) with inductive source degeneration structure for this design. To achieve the S11 parameters and current consumption specifications, the core and cascode transistors for high gain modes (18 dB, 12 dB, and 6 dB) and low gain modes (0 dB, -6 dB, and -12 dB) have been separated. Nevertheless, to keep the area low and keep the phase discontinuity within ±10∘, we have shared the degeneration and load inductors between two cores. To compensate the performance for Process, Voltage, and Temperature (PVT) variations, the structure applies a Low Drop-Out (LDO) regulator and a corner case voltage compensator. The design has been proceeded in a 65-nm RSB process design kit and the supply voltage is 1 V. For 18 dB and -12 dB gain modes as two examples, the NF, current consumption, and Input Third Order Intercept Point (IIP3) values are 1.2 dB and 16 dB, 10.8 mA and 1.2 mA, and -6 dBm and 8 dBm, respectively.


Assuntos
Amplificadores Eletrônicos
13.
Sensors (Basel) ; 21(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34640682

RESUMO

This paper presents an analog front-end for fine-dust detection systems with a 77-dB-wide dynamic range and a dual-mode ultra-low noise TIA with 142-dBΩ towards the maximum gain. The required high sensitivity of the analog signal conditioning path dictates having a high sensitivity at the front-end while the Input-Referred Noise (IRN) is kept low. Therefore, a TIA with a high sensitivity to detected current bio-signals is provided by a photodiode module. The analog front end is formed by the TIA, a DC-Offset Cancellation (DCOC) circuit, a Single-to-Differential Amplifier (SDA), and two Programmable Gain Amplifiers (PGAs). Gain adjustment is implemented by a coarse-gain-step using selective loads with four different gain values and fine-gain steps by 42 dB dynamic range during 16 fine steps. The settling time of the TIA is compensated using a capacitive compensation which is applied for the last stage. An off-state circuitry is proposed to avoid any off-current leakage. This TIA is designed in a 0.18 µm standard CMOS technology. Post-layout simulations show a high gain operation with a 67 dB dynamic range, input-referred noise, less than 600 fA/√Hz in low frequencies, and less than 27 fA/√Hz at 20 kHz, a minimum detectable current signal of 4 pA, and a 2.71 mW power consumption. After measuring the full path of the analog signal conditioning path, the experimental results of the fabricated chip show a maximum gain of 142 dB for the TIA. The Single-to-Differential Amplifier delivers a differential waveform with a unity gain. The PGA1 and PGA2 show a maximum gain of 6.7 dB and 6.3 dB, respectively. The full-path analog front-end shows a wide dynamic range of up to 77 dB in the measurement results.

14.
Sensors (Basel) ; 20(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937979

RESUMO

Recently, piezoresistive-type (PRT) pressure sensors have been gaining attention in variety of applications due to their simplicity, low cost, miniature size and ruggedness. The electrical behavior of a pressure sensor is highly dependent on the temperature gradient which seriously degrades its reliability and reduces measurement accuracy. In this paper, polynomial-based adaptive digital temperature compensation is presented for automotive piezoresistive pressure sensor applications. The non-linear temperature dependency of a pressure sensor is accurately compensated for by incorporating opposite characteristics of the pressure sensor as a function of temperature. The compensation polynomial is fully implemented in a digital system and a scaling technique is introduced to enhance its accuracy. The resource sharing technique is adopted for minimizing controller area and power consumption. The negative temperature coefficient (NTC) instead of proportional to absolute temperature (PTAT) or complementary to absolute temperature (CTAT) is used as the temperature-sensing element since it offers the best temperature characteristics for grade 0 ambient temperature operating range according to the automotive electronics council (AEC) test qualification ACE-Q100. The shared structure approach uses an existing analog signal conditioning path, composed of a programmable gain amplifier (PGA) and an analog-to-digital converter (ADC). For improving the accuracy over wide range of temperature, a high-resolution sigma-delta ADC is integrated. The measured temperature compensation accuracy is within ±0.068% with full scale when temperature varies from -40 °C to 150 °C according to ACE-Q100. It takes 37 µs to compute the temperature compensation with a clock frequency of 10 MHz. The proposed technique is integrated in an automotive pressure sensor signal conditioning chip using a 180 nm complementary metal-oxide-semiconductor (CMOS) process.

15.
Sensors (Basel) ; 20(14)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707685

RESUMO

In this article, a highly reliable radio frequency (RF) wake-up receiver (WuRx) is presented for electronic toll collection (ETC) applications. An intelligent digital controller (IDC) is proposed as the final stage for improving WuRx reliability and replacing complex analog blocks. With IDC, high reliability and accuracy are achieved by sensing and ensuring the successive, configurable number of wake-up signal cycles before enabling power-hungry RF transceiver. The IDC and range communication (RC) oscillator current consumption is reduced by a presented self-hibernation technique during the non-wake-up period. For accommodating wake-up signal frequency variation and enhancing WuRx accuracy, a digital hysteresis is incorporated. To avoid uncertain conditions during poor and false wake-up, a watch-dog timer for IDC self-recovery is integrated. During wake-up, the digital controller consumes 34.62 nW power and draws 38.47 nA current from a 0.9 V supply. In self-hibernation mode, its current reduces to 9.7 nA. It is fully synthesizable and needs 809 gates for its implementation in a 130 nm CMOS process with a 94 × 82 µm2 area. The WuRx measured power consumption is 2.48 µW, has -46 dBm sensitivity, and a 0.484 mm² chip area.

16.
Sensors (Basel) ; 18(5)2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29883435

RESUMO

In this paper, a high noise immunity, 28 × 16-channel finger touch sensing IC for an orthogonal frequency division multiplexing (OFDM) touch sensing scheme is presented. In order to increase the signal-to-noise ratio (SNR), the OFDM sensing scheme is proposed. The transmitter (TX) transmits the orthogonal signal to each channels of the panel. The receiver (RX) detects the magnitude of the orthogonal frequency to be transmitted from the TX. Due to the orthogonal characteristics, it is robust to narrowband interference and noise. Therefore, the SNR can be improved. In order to reduce the noise effect of low frequencies, a mixer and high-pass filter are proposed as well. After the noise is filtered, the touch SNR attained is 60 dB, from 20 dB before the noise is filtered. The advantage of the proposed OFDM sensing scheme is its ability to detect channels of the panel simultaneously with the use of multiple carriers. To satisfy the linearity of the signal in the OFDM system, a high-linearity mixer and a rail-to-rail amplifier in the TX driver are designed. The proposed design is implemented in 90 nm CMOS process. The SNR is approximately 60 dB. The area is 13.6 mm², and the power consumption is 62.4 mW.

17.
Sensors (Basel) ; 18(6)2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29865168

RESUMO

This paper presents a 612⁻1152 MHz Injection-Locked Frequency Multiplier (ILFM). The proposed ILFM is used to send an input signal to a receiver in only the I/Q mismatch calibration mode. Adopting a Phase-Locked Loop (PLL) to calibrate the receiver places a burden on this system because of the additional area and power consumption that is required. Instead of the PLL, to satisfy high-frequency, low-jitter and low-area requirements, a Ring Oscillator is adopted in the system. The free-running frequency of the ILFM is automatically and digitally calibrated to reflect the frequency of the injected signal from the harmonics of the reference clock. To control the frequency of the ILFM, the load current is digitally tuned with a 6-bit digital control signal. The proposed ILFM locks to the target frequency using a digitally controlled Frequency Locked Loop (FLL). This chip is fabricated using 1-poly 6-metal 0.18 µm CMOS and has achieved the wide tuning range of 612⁻1152 MHz. The power consumption is 0.95 mW from a supply voltage of 1.8 V. The measured phase noise of the ILFM is -108 dBc/Hz at a 1 MHz offset.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...