Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7801, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016975

RESUMO

The heterogeneity of functional cardiomyocytes arises during heart development, which is essential to the complex and highly coordinated cardiac physiological function. Yet the biological and physiological identities and the origin of the specialized cardiomyocyte populations have not been fully comprehended. Here we report a previously unrecognised population of cardiomyocytes expressing Dbhgene encoding dopamine beta-hydroxylase in murine heart. We determined how these myocytes are distributed across the heart by utilising advanced single-cell and spatial transcriptomic analyses, genetic fate mapping and molecular imaging with computational reconstruction. We demonstrated that they form the key functional components of the cardiac conduction system by using optogenetic electrophysiology and conditional cardiomyocyte Dbh gene deletion models. We revealed their close relationship with sympathetic innervation during cardiac conduction system formation. Our study thus provides new insights into the development and heterogeneity of the mammalian cardiac conduction system by revealing a new cardiomyocyte population with potential catecholaminergic endocrine function.


Assuntos
Coração , Miócitos Cardíacos , Camundongos , Animais , Coração/fisiologia , Sistema de Condução Cardíaco , Mamíferos , Perfilação da Expressão Gênica , Dopamina beta-Hidroxilase
2.
Sci Data ; 10(1): 577, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666871

RESUMO

The development of the cardiac conduction system (CCS) is essential for correct heart function. However, critical details on the cell types populating the CCS in the mammalian heart during the development remain to be resolved. Using single-cell RNA sequencing, we generated a large dataset of transcriptomes of ~0.5 million individual cells isolated from murine hearts at six successive developmental corresponding to the early, middle and late stages of heart development. The dataset provides a powerful library for studying the development of the heart's CCS and other cardiac components. Our initial analysis identified distinct cell types between 20 to 26 cell types across different stages, of which ten are involved in forming the CCS. Our dataset allows researchers to reuse the datasets for data mining and a wide range of analyses. Collectively, our data add valuable transcriptomic resources for further study of cardiac development, such as gene expression, transcriptional regulation and functional gene activity in developing hearts, particularly the CCS.


Assuntos
Coração , Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Mineração de Dados , Perfilação da Expressão Gênica , Biblioteca Gênica , Mamíferos , Análise de Sequência de RNA
3.
Front Physiol ; 13: 779514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665220

RESUMO

Biological tissues are naturally three-dimensional (3D) opaque structures, which poses a major challenge for the deep imaging of spatial distribution and localization of specific cell types in organs in biomedical research. Here we present a 3D heart imaging reconstruction approach by combining an improved heart tissue-clearing technique with high-resolution light-sheet fluorescence microscopy (LSFM). We have conducted a three-dimensional and multi-scale volumetric imaging of the ultra-thin planes of murine hearts for up to 2,000 images per heart in x-, y-, and z three directions. High-resolution 3D volume heart models were constructed in real-time by the Zeiss Zen program. By using such an approach, we investigated detailed three-dimensional spatial distributions of two specific cardiomyocyte populations including HCN4 expressing pacemaker cells and Pnmt+ cell-derived cardiomyocytes by using reporter mouse lines Hcn4DreER/tdTomato and PnmtCre/ChR2-tdTomato. HCN4 is distributed throughout right atrial nodal regions (i.e., sinoatrial and atrioventricular nodes) and the superior-inferior vena cava axis, while Pnmt+ cell-derived cardiomyocytes show distinct ventral, left heart, and dorsal side distribution pattern. Our further electrophysiological analysis indicates that Pnmt + cell-derived cardiomyocytes rich left ventricular (LV) base is more susceptible to ventricular arrhythmia under adrenergic stress than left ventricular apex or right ventricle regions. Thus, our 3D heart imaging reconstruction approach provides a new solution for studying the geometrical, topological, and physiological characteristics of specific cell types in organs.

4.
Oxid Med Cell Longev ; 2022: 8538296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387264

RESUMO

Objective: Ageing is one of the risk factors associated with cardiovascular diseases including cardiac arrhythmias and heart failure. Ageing-related cardiac dysfunction involves a complicated pathophysiological progress. Abnormal membrane voltage and Ca2+ dynamics in aged cardiomyocytes contribute to ageing-related arrhythmias. However, its underlying mechanisms have not been well clarified. Methods: Young and old rats or mice were included in this study. Cardiac electrophysiological properties and functions were assessed by ECG, echocardiography, and ex vivo heart voltage and Ca2+ optical mapping. Proteomics, phosphor-proteomics, Western blotting, Masson staining, and ROS measurement were used to investigate the underlying mechanisms. Results: Ageing increased the incidence of cardiac hypertrophy and fibrosis in rats. Moreover, ageing increased the occurrence of ventricular tachycardia or ventricular fibrillation induced by rapid pacing and during isoprenaline (ISO) (1 mg/kg i.p.) challenge in mice in vivo. Optical mapping with dual dyes (membrane voltage (V m ) dye and intracellular Ca2+ dye) simultaneously recording revealed that ageing increased the action potential duration (APD) and Ca2+ transient duration (CaTD) and slowed the ventricular conduction with the Langendorff-perfused mouse heart. More importantly, ageing increased the ISO-induced (1 µM) changes of APD (ΔAPD80) and CaTD (ΔCaTD50). Ageing also delayed the decay of Ca2+ transient by extending the decay time constant from 30% to 90% (τ 30-90). In addition, ageing decreased the V m /Ca 2+ latency which represented the coupling of V m /Ca 2+ including between the midpoint of AP depolarization and Ca2+ upstroke, peak transmembrane voltage and peak cytosolic calcium, and time to 50% voltage repolarization and extrusion of cytosolic calcium. Optical mapping also revealed that ageing increased the ISO-induced arrhythmia incidence and occurrence of the excitation rotor. Proteomics and phosphor-proteomics assays from rat hearts demonstrated ageing-induced protein and phosphor-protein changes, suggesting that CaMKII was involved in ageing-induced change. Ageing increased the level of ROS and the expression of NOX4, oxidative CaMKII (ox-CaMKII), phosphorated CaMKII (p-CaMKII), and periostin. Conclusion: Ageing accelerates cardiac remodelling and increases the susceptibility to ventricular arrhythmias through NOX4/ROS/CaMKII pathway-mediated abnormal membrane voltage and intracellular Ca2+ handling and V m /Ca 2+ coupling.


Assuntos
Remodelamento Atrial , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Potenciais de Ação , Animais , Arritmias Cardíacas , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Isoproterenol , Camundongos , Miócitos Cardíacos/metabolismo , NADPH Oxidase 4 , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...