Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29567523

RESUMO

Phosphate adsorption at the metal oxide-water interface has been intensely studied, and the system phosphate-goethite in aqueous media is normally used as a model system with abundant information regarding adsorption-desorption under very different conditions. In spite of this, there is still discussion on whether the main inner-sphere surface complexes that phosphate forms on goethite are monodentate or bidentate. A new spectroscopic technique, InfraRed Surface Titration (IRST), is presented here and used to systematically explore the surface speciation of phosphate on goethite in the pH range 4.5-9.5 at different surface coverages. IRST enabled to construct distribution curves of surface species and distribution curves of dissolved phosphate species. In combination with the CD-MUSIC surface complexation model it was possible to conclude that surface complexes are monodentate. Very accurate distribution curves were obtained, showing a crossing point at pH5.5 at a surface coverage of 2.0µmolm-2, with a mononuclear monoprotonated species predominating at pH>5.5 and a mononuclear diprotonated species prevailing at pH<5.5. On the contrary, at the low surface coverage of 0.7µmolm-2 there is no crossing point, with the mononuclear monoprotonated species prevailing at all pH. IRST can become a powerful technique to investigate structure, properties and reactions of any IR-active surface complex at the solid-water interface.

2.
J Hazard Mater ; 186(2-3): 1713-9, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21242027

RESUMO

The adsorption-desorption kinetics of arsenate on a Fe(III)-modified montmorillonite (Fe-M) was studied at different arsenate concentrations, pH and stirring rates. The synthesized solid was a porous sample with Fe(III) present as a mix of monomeric and polymeric Fe(III) species in the interlayer and on the external surface. Adsorption took place in a two-step mechanism, with an initial fast binding of arsenate to Fe(III) species at the external surface (half-lives of 1 min or shorter) followed by a slower binding to less accessible Fe(III) species in pores and the interlayer (half-lives of around 1 h). Desorption kinetics also reflected the presence of externally and internally adsorbed arsenate. At pH 6 the maximum adsorbed arsenate was 52 µmol/g, a value that is low as compared to adsorption on ferrihydrite (700 µmol/g) and goethite (192-220 µmol/g). However, since the Fe(III) content of Fe-M is much lower than that of ferrihydrite and goethite, Fe(III) species in Fe-M are more efficient in binding arsenate than in ferrihydrite or goethite (one As atom is attached every 8.95 iron atoms). This high binding efficiency indicates that Fe(III) species are well spread on montmorillonite, forming small oligomeric species or surface clusters containing just a few iron atoms.


Assuntos
Arseniatos/química , Bentonita/química , Adsorção , Algoritmos , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Compostos de Ferro/química , Cinética , Minerais/química , Porosidade , Solubilidade , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...