Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 42(8): 1649-1666, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37191358

RESUMO

Since their introduction to North America in the 1980s, research to develop effective control tools for invasive mussels (Dreissena polymorpha and D. rostriformis bugensis) has been ongoing across various research institutions using a range of testing methods. Inconsistencies in experimental methods and reporting present challenges for comparing data, repeating experiments, and applying results. The Invasive Mussel Collaborative established the Toxicity Testing Work Group (TTWG) in 2019 to identify "best practices" and guide development of a standard framework for dreissenid mussel toxicity testing protocols. We reviewed the literature related to laboratory-based dreissenid mussel toxicity tests and determined the degree to which standard guidelines have been used and their applicability to dreissenid mussel testing. We extracted detailed methodology from 99 studies from the peer-reviewed and gray literature and conducted a separate analysis for studies using presettlement and postsettlement mussels. We identified specific components of methods and approaches that could be refined or standardized for dreissenid mussels. These components included species identification, collection methods, size/age class distinction, maintenance practices, testing criteria, sample size, response measures, reporting parameters, exposure methods, and mortality criteria. We consulted experts in the field of aquatic toxicology and dreissenid mussel biology on our proposed. The final recommendations contained in the present review are based on published standard guidelines, methods reported in the published and gray literature, and the expertise of TTWG members and an external panel. In addition, our review identifies research needs for dreissenid mussel testing including improved methods for early-life stage testing, comparative data on life stages and between dreissenid mussel species, inclusion of a reference toxicant, and additional testing of nontarget species (i.e., other aquatic organisms). Environ Toxicol Chem 2023;42:1649-1666. © 2023 His Majesty the King in Right of Canada. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Environment and Climate Change Canada. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Bivalves , Dreissena , Animais , Humanos , Espécies Introduzidas , Dreissena/fisiologia , América do Norte , Canadá
2.
J Environ Manage ; 332: 117383, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736086

RESUMO

Freshwater invasive species, such as the quagga mussel (Dreissena rostriformis bugensis), are causing over $1 billion USD annually in damages to water infrastructure, recreation, and the environment. Once established, quagga and other dreissenid mussels are extremely difficult to eradicate. Preventing the spread of these invasives is critical and of high management concern. Invasive dreissenid establishment is predicated upon both successful dispersal from a source and suitable habitat in the uninfested waterbody to which they are transported. Recreational boaters have become predominant dispersal vectors making it possible to forecast the risk of invasion of waterbodies for more targeted management and prevention. We developed an integrated mussel dispersal model that couples a constrained gravity model and habitat suitability model to forecast future invasions. The model simulates boater movement between lakes, the likelihood of boats transporting mussels, and the likelihood that those mussels survive in the environmental conditions of the new lake. Model output was most sensitive to changes in boater threshold, then buffer zones, while not as sensitive to changes in habitat suitability. From an initial infested source pool of 11 among 402 Western inland US lakes, we forecast additional lakes infested in several possible simulation scenarios. Constraining movement reduced connectivity between waterbodies with amplifying effects at different distance levels. This model can be used to determine waterbodies most at risk for dreissenid mussel invasion and to highlight the importance of multifactor integrated models in environmental management.


Assuntos
Bivalves , Dreissena , Animais , Lagos , Ecossistema , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA