Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012423

RESUMO

The persistence of long-term coronavirus-induced disease 2019 (COVID-19) sequelae demands better insights into its natural history. Therefore, it is crucial to discover the biomarkers of disease outcome to improve clinical practice. In this study, 160 COVID-19 patients were enrolled, of whom 80 had a "non-severe" and 80 had a "severe" outcome. Sera were analyzed by proximity extension assay (PEA) to assess 274 unique proteins associated with inflammation, cardiometabolic, and neurologic diseases. The main clinical and hematochemical data associated with disease outcome were grouped with serological data to form a dataset for the supervised machine learning techniques. We identified nine proteins (i.e., CD200R1, MCP1, MCP3, IL6, LTBP2, MATN3, TRANCE, α2-MRAP, and KIT) that contributed to the correct classification of COVID-19 disease severity when combined with relative neutrophil and lymphocyte counts. By analyzing PEA, clinical and hematochemical data with statistical methods that were able to handle many variables in the presence of a relatively small sample size, we identified nine potential serum biomarkers of a "severe" outcome. Most of these were confirmed by literature data. Importantly, we found three biomarkers associated with central nervous system pathologies and protective factors, which were downregulated in the most severe cases.


Assuntos
COVID-19 , Proteômica , Biomarcadores/sangue , COVID-19/diagnóstico , Humanos , Contagem de Linfócitos , Aprendizado de Máquina
2.
Front Immunol ; 13: 835348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251027

RESUMO

Mast cells (MCs) are tissue-resident, long lived innate immune cells with important effector and immunomodulatory functions. They are equipped with an eclectic variety of receptors that enable them to sense multiple stimuli and to generate specific responses according on the type, strength and duration of the stimulation. Several studies demonstrated that myeloid cells can retain immunological memory of their encounters - a process termed 'trained immunity' or 'innate immune memory'. As MCs are among the one of first cells to come into contact with the external environment, it is possible that such mechanisms of innate immune memory might help shaping their phenotype and effector functions; however, studies on this aspect of MC biology are still scarce. In this manuscript, we investigated the ability of MCs primed with different stimuli to respond to a second stimulation with the same or different ligands, and determined the molecular and epigenetic drivers of these responses. Our results showed that, while the stimulation with IgE and ß-glucan failed to induce either tolerant or trained phenotypes, LPS conditioning was able to induce a profound and long-lasting remodeling of the signaling pathways involved in the response against LPS or fungal pathogens. On one side, LPS induced a strong state of unresponsiveness to secondary LPS stimulation due to the impairment of the PI3K-AKT signaling pathway, which resulted in the reduced activation of NF-κB and the decreased release of TNF-α and IL-6, compared to naïve MCs. On the other side, LPS primed MCs showed an increased release of TNF-α upon fungal infection with live Candida albicans, thus suggesting a dual role of LPS in inducing both tolerance and training phenotypes depending on the secondary challenge. Interestingly, the inhibition of HDAC during LPS stimulation partially restored the response of LPS-primed MCs to a secondary challenge with LPS, but failed to revert the increased cytokine production of these cells in response to C. albicans. These data indicate that MCs, as other innate immune cells, can develop innate immune memory, and that different stimulatory environments can shape and direct MC specific responses towards the dampening or the propagation of the local inflammatory response.


Assuntos
Lipopolissacarídeos , Mastócitos , Citocinas/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Methods Mol Biol ; 2270: 61-76, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33479893

RESUMO

IL-10 is the best known and most studied anti-inflammatory cytokine and, in the last 20 years, it has acquired even greater fame as it has been associated with the regulatory phenotype of B cells. Indeed, although great efforts have been made to find a unique marker, to date IL-10 remains the main way to follow both murine and human regulatory B cells, hence the need of precise and reproducible methods to identify and purify IL-10-producing B cells for both functional and molecular downstream assays. In this chapter, we present our protocols to isolate these cells from the murine spleen and peritoneum and from human peripheral blood. Since the production of IL-10 by B cells is not only a weapon to counteract the adverse effect of pro-inflammatory cytokines but also a response to cellular activation, we focused on those B cells that are prone to IL-10 production and detectable following a short-term stimulation with phorbol-12-myristate-13-acetate, ionomycin, and lipopolysaccharide (murine system) or CpG (human system).


Assuntos
Subpopulações de Linfócitos B/citologia , Linfócitos B Reguladores/citologia , Separação Celular/métodos , Animais , Subpopulações de Linfócitos B/imunologia , Citocinas/imunologia , Expressão Gênica/genética , Expressão Gênica/imunologia , Humanos , Interleucina-10/metabolismo , Ionomicina/farmacologia , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/imunologia , Camundongos , Ésteres de Forbol/farmacologia , Baço/citologia , Acetato de Tetradecanoilforbol/farmacologia
4.
Methods Mol Biol ; 2270: 323-339, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33479907

RESUMO

Epigenetic studies are becoming increasingly common in the immunology field thanks to the support of cutting edge technology and to their potential of providing a large amount of data at the single cell level. Moreover, epigenetic modifications were shown to play a role in autoimmune/inflammatory disorders, paving the way for the possibility of using the results of epigenetic studies for therapeutic purposes. In recent years, epigenetic marks such as DNA methylation, histone modifications and nucleosome positioning were shown to regulate B cell fate and function during an immune response, but very little has been done in the context of one of the most recently discovered B cell subsets, that is regulatory B cells. Although no consensus has yet been found on the identity of these immunosuppressive B cells, the role of the IL-10 cytokine is consolidated, both in the murine and human setting. In this chapter we will focus on the analysis of the methylation profile of a gene of interest and we will specifically describe cloning and pyrosequencing bisulphite sequencing PCR (BSP). Given the specific context, we will provide tips and tricks for the analysis of the il-10 gene locus. Nonetheless, the methods presented are valid for the study of any gene of interest.


Assuntos
Linfócitos B Reguladores/metabolismo , Linfócitos B/fisiologia , Metilação de DNA , Interleucina-10/genética , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B Reguladores/imunologia , Diferenciação Celular/genética , Ilhas de CpG , Citocinas/genética , Epigênese Genética , Epigenômica/métodos , Humanos , Interleucina-10/imunologia , Reação em Cadeia da Polimerase/métodos
5.
Eur J Immunol ; 51(2): 445-458, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32920851

RESUMO

B lymphocytes are among the cell types whose effector functions are modulated by mast cells (MCs). The B/MC crosstalk emerged in several pathological settings, notably the colon of inflammatory bowel disease (IBD) patients is a privileged site in which MCs and IgA+ cells physically interact. Herein, by inducing conditional depletion of MCs in red MC and basophil (RMB) mice, we show that MCs control B cell distribution in the gut and IgA serum levels. Moreover, in dextran sulfate sodium (DSS)-treated RMB mice, the presence of MCs is fundamental for the enlargement of the IgA+ population in the bowel and the increase of systemic IgA production. Since both conventional B-2 and peritoneal-derived B cells populate the intestine and communicate with MCs in physiological conditions and during inflammation, we further explored this interplay through the use of co-cultures. We show that MCs finely regulate different aspects of splenic B cell biology while peritoneal B cells are unresponsive to the supporting effects provided by MCs. Interestingly, peritoneal B cells induce a pro-inflammatory skewing in MCs, characterized by increased ST2 and TNF-α expression. Altogether, this study uncovers the versatility of the B/MC liaison and highlights key aspects for the resolution of intestinal inflammation.


Assuntos
Linfócitos B/metabolismo , Colo/imunologia , Imunoglobulina A/imunologia , Mucosa Intestinal/imunologia , Mastócitos/imunologia , Animais , Colite/imunologia , Colo/microbiologia , Sulfato de Dextrana/imunologia , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/imunologia
6.
DNA Repair (Amst) ; 82: 102675, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31450087

RESUMO

The pathogenesis of colorectal cancer (CRC) involves different mechanisms, such as genomic and microsatellite instabilities. Recently, a contribution of the base excision repair (BER) pathway in CRC pathology has been emerged. In this context, the involvement of APE1 in the BER pathway and in the transcriptional regulation of genes implicated in tumor progression strongly correlates with chemoresistance in CRC and in more aggressive cancers. In addition, the APE1 interactome is emerging as an important player in tumor progression, as demonstrated by its interaction with Nucleophosmin (NPM1). For these reasons, APE1 is becoming a promising target in cancer therapy and a powerful prognostic and predictive factor in several cancer types. Thus, specific APE1 inhibitors have been developed targeting: i) the endonuclease activity; ii) the redox function and iii) the APE1-NPM1 interaction. Furthermore, mutated p53 is a common feature of advanced CRC. The relationship between APE1 inhibition and p53 is still completely unknown. Here, we demonstrated that the inhibition of the endonuclease activity of APE1 triggers p53-mediated effects on cell metabolism in HCT-116 colon cancer cell line. In particular, the inhibition of the endonuclease activity, but not of the redox function or of the interaction with NPM1, promotes p53 activation in parallel to sensitization of p53-expressing HCT-116 cell line to genotoxic treatment. Moreover, the endonuclease inhibitor affects mitochondrial activity in a p53-dependent manner. Finally, we demonstrated that 3D organoids derived from CRC patients are susceptible to APE1-endonuclease inhibition in a p53-status correlated manner, recapitulating data obtained with HCT-116 isogenic cell lines. These findings suggest the importance of further studies aimed at testing the possibility to target the endonuclease activity of APE1 in CRC.


Assuntos
Neoplasias do Colo/patologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Dano ao DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Metanossulfonato de Metila/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação , Nucleofosmina , Proteína Supressora de Tumor p53/genética
7.
J Biol Chem ; 294(13): 5198-5207, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30705092

RESUMO

The base excision repair (BER) pathway is an important DNA repair pathway and is essential for immune responses. In fact, it regulates both the antigen-stimulated somatic hypermutation (SHM) process and plays a central function in the process of class switch recombination (CSR). For both processes, a central role for apurinic/apyrimidinic endonuclease 1 (APE1) has been demonstrated. APE1 acts also as a master regulator of gene expression through its redox activity. APE1's redox activity stimulates the DNA-binding activity of several transcription factors, including NF-κB and a few others involved in inflammation and in immune responses. Therefore, it is possible that APE1 has a role in regulating the CSR through its function as a redox coactivator. The present study was undertaken to address this question. Using the CSR-competent mouse B-cell line CH12F3 and a combination of specific inhibitors of APE1's redox (APX3330) and repair (compound 3) activities, APE1-deficient or -reconstituted cell lines expressing redox-deficient or endonuclease-deficient proteins, and APX3330-treated mice, we determined the contributions of both endonuclease and redox functions of APE1 in CSR. We found that APE1's endonuclease activity is essential for IgA-class switch recombination. We provide evidence that the redox function of APE1 appears to play a role in regulating CSR through the interleukin-6 signaling pathway and in proper IgA expression. Our results shed light on APE1's redox function in the control of cancer growth through modulation of the IgA CSR process.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Imunoglobulina A/genética , Switching de Imunoglobulina , Animais , Linfócitos B/metabolismo , Linhagem Celular , Reparo do DNA , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Transdução de Sinais
8.
Front Immunol ; 9: 2829, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555491

RESUMO

Mast cells (MCs) are long-lived immune cells widely distributed at mucosal surfaces and are among the first immune cell type that can get in contact with the external environment. This study aims to unravel the mechanisms of reciprocal influence between mucosal MCs and Candida albicans as commensal/opportunistic pathogen species in humans. Stimulation of bone marrow-derived mast cells (BMMCs) with live forms of C. albicans induced the release of TNF-α, IL-6, IL-13, and IL-4. Quite interestingly, BMMCs were able to engulf C. albicans hyphae, rearranging their α-tubulin cytoskeleton and accumulating LAMP1+ vesicles at the phagocytic synapse with the fungus. Candida-infected MCs increased macrophage crawling ability and promoted their chemotaxis against the infection. On the other side, resting MCs inhibited macrophage phagocytosis of C. albicans in a contact-dependent manner. Taken together, these results indicate that MCs play a key role in the maintenance of the equilibrium between the host and the commensal fungus C. albicans, limiting pathological fungal growth and modulating the response of resident macrophages during infections.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Macrófagos/imunologia , Mastócitos/imunologia , Fagocitose , Animais , Candidíase/patologia , Citocinas/imunologia , Feminino , Proteínas de Membrana Lisossomal/imunologia , Macrófagos/fisiologia , Masculino , Mastócitos/patologia
9.
Immunol Rev ; 282(1): 35-46, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29431204

RESUMO

Mast cells (MCs) are derived from committed precursors that leave the hematopoietic tissue, migrate in the blood, and colonize peripheral tissues where they terminally differentiate under microenvironment stimuli. They are distributed in almost all vascularized tissues where they act both as immune effectors and housekeeping cells, contributing to tissue homeostasis. Historically, MCs were classified into 2 subtypes, according to tryptic enzymes expression. However, MCs display a striking heterogeneity that reflects a complex interplay between different microenvironmental signals delivered by various tissues, and a differentiation program that decides their identity. Moreover, tissue-specific MCs show a trained memory, which contributes to shape their function in a specific microenvironment. In this review, we summarize the current state of our understanding of MC heterogeneity that reflects their different tissue experiences. We describe the discovery of unique cell molecules that can be used to distinguish specific MC subsets in vivo, and discuss how the improved ability to recognize these subsets provided new insights into the biology of MCs. These recent advances will be helpful for the understanding of the specific role of individual MC subsets in the control of tissue homeostasis, and in the regulation of pathological conditions such as infection, autoimmunity, and cancer.


Assuntos
Mastócitos/fisiologia , Triptases/metabolismo , Animais , Diferenciação Celular , Microambiente Celular , Homeostase , Humanos , Imunomodulação , Fenótipo
10.
J Mol Biol ; 378(4): 887-97, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18395224

RESUMO

Amyloidosis associated to hemodialysis is caused by persistently high beta(2)-microglobulin (beta(2)m) serum levels. beta(2)m is an intrinsically amyloidogenic protein whose capacity to assemble into amyloid fibrils in vitro and in vivo is concentration dependent; no beta(2)m genetic variant is known in the human population. We investigated the roles of two evolutionary conserved Trp residues in relation to beta(2)m structure, function and folding/misfolding by means of a combined biophysical and functional approach. We show that Trp60 plays a functional role in promoting the association of beta(2)m in class I major histocompatibility complex; it is exposed to the solvent at the apex of a protein loop in order to accomplish such function. The Trp60-->Gly mutation has a threefold effect: it stabilizes beta(2)m, inhibits beta(2)m amyloidogenic propensity and weakens the interaction with the class I major histocompatibility complex heavy chain. On the contrary, Trp95 is buried in the beta(2)m core; the Trp95-->Gly mutation destabilizes the protein, which is unfolded in solution, yielding nonfibrillar beta(2)m aggregates. Trp60 and Trp95 therefore play differential and complementary roles in beta(2)m, being relevant for function (Trp60) and for maintenance of a properly folded structure (Trp95) while affecting in distinct ways the intrinsic propensity of wild-type beta(2)m towards self-aggregation into amyloid fibrils.


Assuntos
Amiloide/metabolismo , Dobramento de Proteína , Microglobulina beta-2/química , Microglobulina beta-2/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Cinética , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Soluções , Triptofano/genética , Triptofano/metabolismo , Microglobulina beta-2/genética , Microglobulina beta-2/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...