Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(1): 86-97.e10, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36528024

RESUMO

Color variation is a frequent evolutionary substrate for camouflage in small mammals, but the underlying genetics and evolutionary forces that drive color variation in natural populations of large mammals are mostly unexplained. The American black bear, Ursus americanus (U. americanus), exhibits a range of colors including the cinnamon morph, which has a similar color to the brown bear, U. arctos, and is found at high frequency in the American southwest. Reflectance and chemical melanin measurements showed little distinction between U. arctos and cinnamon U. americanus individuals. We used a genome-wide association for hair color as a quantitative trait in 151 U. americanus individuals and identified a single major locus (p < 10-13). Additional genomic and functional studies identified a missense alteration (R153C) in Tyrosinase-related protein 1 (TYRP1) that likely affects binding of the zinc cofactor, impairs protein localization, and results in decreased pigment production. Population genetic analyses and demographic modeling indicated that the R153C variant arose 9.36 kya in a southwestern population where it likely provided a selective advantage, spreading both northwards and eastwards by gene flow. A different TYRP1 allele, R114C, contributes to the characteristic brown color of U. arctos but is not fixed across the range.


Assuntos
Ursidae , Animais , Fluxo Gênico , Variação Genética , Genoma , Estudo de Associação Genômica Ampla , Ursidae/genética
2.
Ecol Evol ; 11(17): 12114-12128, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522364

RESUMO

Although least chipmunks (Neotamias minimus) are a widely distributed North American species of least concern, the southernmost population, N. m. atristriatus (Peñasco least chipmunk), is imperiled and a candidate for federal listing as a subspecies. We conducted a phylogeographic analysis across the N. minimus range to assess genomic differentiation and distinctiveness of the N. m. atristriatus population. Additionally, we leveraged the historical component of sampling to conduct a temporal analysis of N. minimus genetic diversity and also considered climate change effects on range persistence probability by projecting a species distribution model into the IPCC5 RCP 2.6 and 8.5 scenarios. We identified three geographically structured groups (West, North, and South) that were supported by both mitochondrial and nuclear data. N. m. atristriatus grouped within a unique South subclade but were not reciprocally monophyletic from N. m. operarius, and nuclear genome analyses did not separate N. m. atristriatus, N. m. caryi, and N. m. operarius. Thus, while least chipmunks in the Southwest represent an evolutionary significant unit, subspecies distinctions were not supported and listing of the Peñasco population as a Distinct Population Segment of N. m. operarius may be warranted. Our results also support consideration of populations with North and West mitogenomes as two additional evolutionary significant units. We found that N. minimus genetic diversity declined by ~87% over the last century, and our models predicted substantial future habitat contraction, including the loss of the full contemporary ranges of N. m. atristriatus, N. m. arizonensis, and N. m. chuskaensis.

3.
Curr Biol ; 31(12): 2728-2736.e8, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33878301

RESUMO

Analysis of ancient environmental DNA (eDNA) has revolutionized our ability to describe biological communities in space and time,1-3 by allowing for parallel sequencing of DNA from all trophic levels.4-8 However, because environmental samples contain sparse and fragmented data from multiple individuals, and often contain closely related species,9 the field of ancient eDNA has so far been limited to organellar genomes in its contribution to population and phylogenetic studies.5,6,10,11 This is in contrast to data from fossils12,13 where full-genome studies are routine, despite these being rare and their destruction for sequencing undesirable.14-16 Here, we report the retrieval of three low-coverage (0.03×) environmental genomes from American black bear (Ursus americanus) and a 0.04× environmental genome of the extinct giant short-faced bear (Arctodus simus) from cave sediment samples from northern Mexico dated to 16-14 thousand calibrated years before present (cal kyr BP), which we contextualize with a new high-coverage (26×) and two lower-coverage giant short-faced bear genomes obtained from fossils recovered from Yukon Territory, Canada, which date to ∼22-50 cal kyr BP. We show that the Late Pleistocene black bear population in Mexico is ancestrally related to the present-day Eastern American black bear population, and that the extinct giant short-faced bears present in Mexico were deeply divergent from the earlier Beringian population. Our findings demonstrate the ability to separately analyze genomic-scale DNA sequences of closely related species co-preserved in environmental samples, which brings the use of ancient eDNA into the era of population genomics and phylogenetics.


Assuntos
Ursidae , Animais , DNA Antigo , DNA Mitocondrial , Fósseis , Humanos , Metagenômica , Filogenia , Ursidae/genética
4.
Ecol Evol ; 10(11): 4739-4748, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32551057

RESUMO

Urbanization exposes species to novel environments and selection pressures that may change morphological traits within a population. We investigated how the shape and size of crania and mandibles changed over time within a population of brown rats (Rattus norvegicus) living in Manhattan, New York, USA, a highly urbanized environment. We measured 3D landmarks on the cranium and mandible of 62 adult individuals sampled in the 1890s and 2010s. Static allometry explained approximately 22% of shape variation in crania and mandible datasets, while time accounted for approximately 14% of variation. We did not observe significant changes in skull size through time or between the sexes. Estimating the P-matrix revealed that directional selection explained temporal change of the crania but not the mandible. Specifically, rats from the 2010s had longer noses and shorter upper molar tooth rows, traits identified as adaptive to colder environments and higher quality or softer diets, respectively. Our results highlight the continual evolution to selection pressures. We acknowledge that urban selection pressures impacting cranial shape likely began in Europe prior to the introduction of rats to Manhattan. Yet, our study period spanned changes in intensity of artificial lighting, human population density, and human diet, thereby altering various aspects of rat ecology and hence pressures on the skull.

5.
Bioessays ; 42(5): e1900160, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32173902

RESUMO

Phylogeography and zooarchaeology are largely separate disciplines, yet each interrogates relationships between humans and commensal species. Knowledge gained about human history from studies of four commensal rats (Rattus rattus, R. tanezumi, R. exulans, and R. norvegicus) is outlined, and open questions about their spread alongside humans are identified. Limitations of phylogeographic and zooarchaeological studies are highlighted, then how integration would increase understanding of species' demographic histories and resultant inferences about human societies is discussed. How rat expansions have informed the understanding of human migration, urban settlements, trade networks, and intra- and interspecific competition is reviewed. Since each rat species is associated with different human societies, they identify unique ecological and historical/cultural conditions that influenced their expansion. Finally, priority research areas including nuclear genome based phylogeographies are identified using archaeological evidence to understand R. norvegicus expansion across China, multi-wave colonization of R. rattus across Europe, and competition between R. rattus and R. norvegicus.


Assuntos
Roedores , Simbiose , Animais , Humanos , Filogeografia , Ratos
6.
Heredity (Edinb) ; 124(1): 15-27, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31399718

RESUMO

Population genomics offers innovative approaches to test hypotheses related to the source and timing of introduction of invasive species. These approaches are particularly appropriate to study colonization of island ecosystems. The brown rat is a cold-hardy global invasive that has reached most of the world's island ecosystems, including even highly isolated archipelagoes such as the Faroe Islands in the North Atlantic Ocean. Historic records tell of rats rafting to the southern island of Suðuroy in 1768 following a shipwreck off the coast of Scotland, then expanding across the archipelago. We investigated the demographic history of brown rats in the Faroes using 50,174 SNPs. We inferred three independent introductions of rats, including to Suðuroy, the islands of Borðoy and Viðoy, and onto Streymoy from which they expanded to Eysturoy and Vágar. All Faroese populations showed signs of strong bottlenecks and declining effective population size. We inferred that these founder events removed low frequency alleles, the exact data needed to estimate recent demographic histories. Therefore, we were unable to accurately estimate the timing of each invasion. The difficulties with demographic inference may be applicable to other invasive species, particularly those with extreme and recent bottlenecks. We identified three invasions of brown rats to the Faroe Islands that resulted in highly differentiated populations that will be useful for future studies of life history variation and genomic adaptation.


Assuntos
Genética Populacional , Espécies Introduzidas/história , Ratos/genética , Alelos , Animais , Dinamarca , Genômica , História do Século XVIII , História do Século XX , Polimorfismo de Nucleotídeo Único , Densidade Demográfica
7.
Ecol Evol ; 9(19): 11171-11184, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31641463

RESUMO

AIM: For many endemic species with limited dispersal capacities, the relationship between landscape changes and species distributions is still unclear. We characterized the population structure of the endemic ringed salamander (Ambystoma annulatum) across its distribution in the Central Interior Highlands (CIH) of North America, an area of high species endemism, to infer the ecological and evolutionary history of the species. METHODS: We sampled 498 individuals across the species distribution and characterized the population genetic structure using nuclear microsatellite and mitochondrial DNA (mtDNA) markers. RESULTS: Ambystoma annulatum exist in two strongly supported nuclear genetic clusters across the CIH that correspond to a northern cluster that includes the Missouri Ozark populations and a southern cluster that includes the Arkansas and Oklahoma Ozarks and the Ouachita Mountains. Our demographic models estimated that these populations diverged approximately 2,700 years ago. Pairwise estimates of genetic differentiation at microsatellite and mtDNA markers indicated limited contemporary gene flow and suggest that genetic differentiation was primarily influenced by changes in the post-Pleistocene landscape of the CIH. MAIN CONCLUSIONS: Both the geologic history and post-European settlement history of the CIH have influenced the population genetic structure of A. annulatum. The low mtDNA diversity suggests a retraction into and expansion out of refugial areas in the south-central Ozarks, during temperature fluctuations of the Pleistocene and Holocene epochs. Similarly, the estimated divergence time for the two nuclear clusters corresponds to changes in the post-Pleistocene landscape. More recently, decreased A. annulatum gene flow may be a result of increased habitat fragmentation and alteration post-European settlement.

8.
Genome Res ; 29(5): 762-770, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30910795

RESUMO

Fossil evidence indicates that the globally distributed brown rat (Rattus norvegicus) originated in northern China and Mongolia. Historical records report the human-mediated invasion of rats into Europe in the 1500s, followed by global spread because of European imperialist activity during the 1600s-1800s. We analyzed 14 genomes representing seven previously identified evolutionary clusters, and tested alternative demographic models to infer patterns of range expansion, divergence times, and changes in effective population (N e) size for this globally important pest species. We observed three range expansions from the ancestral population that produced the Pacific (diverged ∼16.1 kya), eastern China (∼17.5 kya), and Southeast (SE) Asia (∼0.86 kya) lineages. Our model shows a rapid range expansion from SE Asia into the Middle East and then continued expansion into central Europe 788 yr ago (1227 AD). We observed declining N e within all brown rat lineages from 150-1 kya, reflecting population contractions during glacial cycles. N e increased since 1 kya in Asian and European, but not in Pacific, evolutionary clusters. Our results support the hypothesis that northern Asia was the ancestral range for brown rats. We suggest that southward human migration across China between the 800s-1550s AD resulted in the introduction of rats to SE Asia, from which they rapidly expanded via existing maritime trade routes. Finally, we discovered that North America was colonized separately on both the Atlantic and Pacific seaboards, by evolutionary clusters of vastly different ages and genomic diversity levels. Our results should stimulate discussions among historians and zooarcheologists regarding the relationship between humans and rats.


Assuntos
Demografia , Ratos , Animais , Sudeste Asiático , Evolução Biológica , China , DNA Mitocondrial/genética , Europa (Continente) , História Antiga , Migração Humana/história , Humanos , América do Norte , Filogenia , Filogeografia , Ratos/genética , Sequenciamento Completo do Genoma
9.
Evol Appl ; 11(5): 718-726, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29875813

RESUMO

Over 500 strains of inbred brown rats (Rattus norvegicus) have been developed for use as a biomedical model organism. Most of these inbred lines were derived from the colony established at the Wistar Institute in 1906 or its descendants following worldwide distribution to research and breeding centers. The geographic source of the animals that founded the Wistar colony has been lost to history; thus, we compared 25 inbred rat strains to 326 wild rats from a global diversity dataset at 32 k SNPs, and 47 mitochondrial genomes to identify the source populations. We analyzed nuclear genomic data using principal component analyses and co-ancestry heat maps, and mitogenomes using phylogenetic trees and networks. In the nuclear genome, inbred rats clustered together indicating a single geographic origin for the strains studied and showed admixed ancestral variation with wild rats in eastern Asia and western North America. The Sprague Dawley derived, Wistar derived, and Brown Norway strains each had mitogenomes from different clades which diverged between 13 and 139 kya. Thus, we posit that rats originally collected for captive breeding had high mitochondrial diversity that became fixed through genetic drift and/or artificial selection. Our results show that these important medical models share common genomic ancestry from a few source populations, and opportunities exist to create new strains with diverse genomic backgrounds to provide novel insight into the genomic basis of disease phenotypes.

10.
Heredity (Edinb) ; 120(4): 329-341, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29234157

RESUMO

Previously, American black bears (Ursus americanus) were thought to follow the pattern of female philopatry and male-biased dispersal. However, recent studies have identified deviations from this pattern. Such flexibility in dispersal patterns can allow individuals greater ability to acclimate to changing environments. We explored dispersal and spatial genetic relatedness patterns across ten black bear populations-including long established (historic), with known reproduction >50 years ago, and newly established (recent) populations, with reproduction recorded <50 years ago-in the Interior Highlands and Southern Appalachian Mountains, United States. We used spatially explicit, individual-based genetic simulations to model gene flow under scenarios with varying levels of population density, genetic diversity, and female philopatry. Using measures of genetic distance and spatial autocorrelation, we compared metrics between sexes, between population types (historic and recent), and among simulated scenarios which varied in density, genetic diversity, and sex-biased philopatry. In empirical populations, females in recent populations exhibited stronger patterns of isolation-by-distance (IBD) than females and males in historic populations. In simulated populations, low-density populations had a stronger indication of IBD than medium- to high-density populations; however, this effect varied in empirical populations. Condition-dependent dispersal strategies may permit species to cope with novel conditions and rapidly expand populations. Pattern-process modeling can provide qualitative and quantitative means to explore variable dispersal patterns, and could be employed in other species, particularly to anticipate range shifts in response to changing climate and habitat conditions.


Assuntos
Genética Populacional , Ursidae/genética , Distribuição Animal , Animais , Ecossistema , Feminino , Fluxo Gênico , Variação Genética , Técnicas de Genotipagem , Masculino , Repetições de Microssatélites , Modelos Genéticos , Densidade Demográfica , Análise Espacial , Estados Unidos
11.
Mol Ecol ; 27(1): 83-98, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165929

RESUMO

Human commensal species such as rodent pests are often widely distributed across cities and threaten both infrastructure and public health. Spatially explicit population genomic methods provide insights into movements for cryptic pests that drive evolutionary connectivity across multiple spatial scales. We examined spatial patterns of neutral genomewide variation in brown rats (Rattus norvegicus) across Manhattan, New York City (NYC), using 262 samples and 61,401 SNPs to understand (i) relatedness among nearby individuals and the extent of spatial genetic structure in a discrete urban landscape; (ii) the geographic origin of NYC rats, using a large, previously published data set of global rat genotypes; and (iii) heterogeneity in gene flow across the city, particularly deviations from isolation by distance. We found that rats separated by ≤200 m exhibit strong spatial autocorrelation (r = .3, p = .001) and the effects of localized genetic drift extend to a range of 1,400 m. Across Manhattan, rats exhibited a homogeneous population origin from rats that likely invaded from Great Britain. While traditional approaches identified a single evolutionary cluster with clinal structure across Manhattan, recently developed methods (e.g., fineSTRUCTURE, sPCA, EEMS) provided evidence of reduced dispersal across the island's less residential Midtown region resulting in fine-scale genetic structuring (FST  = 0.01) and two evolutionary clusters (Uptown and Downtown Manhattan). Thus, while some urban populations of human commensals may appear to be continuously distributed, landscape heterogeneity within cities can drive differences in habitat quality and dispersal, with implications for the spatial distribution of genomic variation, population management and the study of widely distributed pests.


Assuntos
Genética Populacional , Geografia , Animais , Variação Genética , Cidade de Nova Iorque , Densidade Demográfica , Análise de Componente Principal , Ratos
12.
Proc Biol Sci ; 283(1841)2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27798305

RESUMO

Native to China and Mongolia, the brown rat (Rattus norvegicus) now enjoys a worldwide distribution. While black rats and the house mouse tracked the regional development of human agricultural settlements, brown rats did not appear in Europe until the 1500s, suggesting their range expansion was a response to relatively recent increases in global trade. We inferred the global phylogeography of brown rats using 32 k SNPs, and detected 13 evolutionary clusters within five expansion routes. One cluster arose following a southward expansion into Southeast Asia. Three additional clusters arose from two independent eastward expansions: one expansion from Russia to the Aleutian Archipelago, and a second to western North America. Westward expansion resulted in the colonization of Europe from which subsequent rapid colonization of Africa, the Americas and Australasia occurred, and multiple evolutionary clusters were detected. An astonishing degree of fine-grained clustering between and within sampling sites underscored the extent to which urban heterogeneity shaped genetic structure of commensal rodents. Surprisingly, few individuals were recent migrants, suggesting that recruitment into established populations is limited. Understanding the global population structure of R. norvegicus offers novel perspectives on the forces driving the spread of zoonotic disease, and aids in development of rat eradication programmes.


Assuntos
Evolução Molecular , Genética Populacional , Ratos/genética , África , Animais , Australásia , China , Europa (Continente) , Humanos , Mongólia , América do Norte , Polimorfismo de Nucleotídeo Único , Federação Russa
13.
Mol Biol Evol ; 32(9): 2338-50, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25989983

RESUMO

Studies of species with continental distributions continue to identify intraspecific lineages despite continuous habitat. Lineages may form due to isolation by distance, adaptation, divergence across barriers, or genetic drift following range expansion. We investigated lineage diversification and admixture within American black bears (Ursus americanus) across their range using 22 k single nucleotide polymorphisms and mitochondrial DNA sequences. We identified three subcontinental nuclear clusters which we further divided into nine geographic regions: Alaskan (Alaska-East), eastern (Central Interior Highlands, Great Lakes, Northeast, Southeast), and western (Alaska-West, West, Pacific Coast, Southwest). We estimated that the western cluster diverged 67 ka, before eastern and Alaskan divergence 31 ka; these divergence dates contrasted with those from the mitochondrial genome where clades A and B diverged 1.07 Ma, and clades A-east and A-west diverged 169 ka. We combined estimates of divergence timing with hindcast species distribution models to infer glacial refugia for the species in Beringia, Pacific Northwest, Southwest, and Southeast. Our results show a complex arrangement of admixture due to expansion out of multiple refugia. The delineation of the genomic population clusters was inconsistent with the ranges for 16 previously described subspecies. Ranges for U. a. pugnax and U. a. cinnamomum were concordant with admixed clusters, calling into question how to order taxa below the species level. Additionally, our finding that U. a. floridanus has not diverged from U. a. americanus also suggests that morphology and genetics should be reanalyzed to assess taxonomic designations relevant to the conservation management of the species.


Assuntos
Ursidae/genética , Animais , Conservação dos Recursos Naturais , Evolução Molecular , Deriva Genética , Especiação Genética , Genoma Mitocondrial , Haplótipos , Dados de Sequência Molecular , Filogeografia , Estados Unidos
14.
PLoS One ; 9(10): e111257, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25350557

RESUMO

Spatial capture-recapture (SCR) models have advanced our ability to estimate population density for wide ranging animals by explicitly incorporating individual movement. Though these models are more robust to various spatial sampling designs, few studies have empirically tested different large-scale trap configurations using SCR models. We investigated how extent of trap coverage and trap spacing affects precision and accuracy of SCR parameters, implementing models using the R package secr. We tested two trapping scenarios, one spatially extensive and one intensive, using black bear (Ursus americanus) DNA data from hair snare arrays in south-central Missouri, USA. We also examined the influence that adding a second, lower barbed-wire strand to snares had on quantity and spatial distribution of detections. We simulated trapping data to test bias in density estimates of each configuration under a range of density and detection parameter values. Field data showed that using multiple arrays with intensive snare coverage produced more detections of more individuals than extensive coverage. Consequently, density and detection parameters were more precise for the intensive design. Density was estimated as 1.7 bears per 100 km2 and was 5.5 times greater than that under extensive sampling. Abundance was 279 (95% CI = 193-406) bears in the 16,812 km2 study area. Excluding detections from the lower strand resulted in the loss of 35 detections, 14 unique bears, and the largest recorded movement between snares. All simulations showed low bias for density under both configurations. Results demonstrated that in low density populations with non-uniform distribution of population density, optimizing the tradeoff among snare spacing, coverage, and sample size is of critical importance to estimating parameters with high precision and accuracy. With limited resources, allocating available traps to multiple arrays with intensive trap spacing increased the amount of information needed to inform parameters with high precision.


Assuntos
Ursidae/fisiologia , Animais , Simulação por Computador , DNA/química , Feminino , Genética Populacional , Genótipo , Geografia , Cabelo , Funções Verossimilhança , Masculino , Repetições de Microssatélites , Missouri , Densidade Demográfica , Dinâmica Populacional
15.
Mol Ecol ; 23(10): 2414-27, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24712442

RESUMO

Bottlenecks, founder events, and genetic drift often result in decreased genetic diversity and increased population differentiation. These events may follow abundance declines due to natural or anthropogenic perturbations, where translocations may be an effective conservation strategy to increase population size. American black bears (Ursus americanus) were nearly extirpated from the Central Interior Highlands, USA by 1920. In an effort to restore bears, 254 individuals were translocated from Minnesota, USA, and Manitoba, Canada, into the Ouachita and Ozark Mountains from 1958 to 1968. Using 15 microsatellites and mitochondrial haplotypes, we observed contemporary genetic diversity and differentiation between the source and supplemented populations. We inferred four genetic clusters: Source, Ouachitas, Ozarks, and a cluster in Missouri where no individuals were translocated. Coalescent models using approximate Bayesian computation identified an admixture model as having the highest posterior probability (0.942) over models where the translocation was unsuccessful or acted as a founder event. Nuclear genetic diversity was highest in the source (AR = 9.11) and significantly lower in the translocated populations (AR = 7.07-7.34; P = 0.004). The Missouri cluster had the lowest genetic diversity (AR = 5.48) and served as a natural experiment showing the utility of translocations to increase genetic diversity following demographic bottlenecks. Differentiation was greater between the two admixed populations than either compared to the source, suggesting that genetic drift acted strongly over the eight generations since the translocation. The Ouachitas and Missouri were previously hypothesized to be remnant lineages. We observed a pretranslocation remnant signature in Missouri but not in the Ouachitas.


Assuntos
Deriva Genética , Variação Genética , Genética Populacional , Ursidae/genética , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Efeito Fundador , Haplótipos , Repetições de Microssatélites , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA , Estados Unidos
16.
Genome Biol Evol ; 3: 1369-80, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22056313

RESUMO

The evolutionary origins of the multitude of duplicate genes in the plant genomes are still incompletely understood. To gain an appreciation of the potential selective forces acting on these duplicates, we phylogenetically inferred the set of metabolic gene families from 10 flowering plant (angiosperm) genomes. We then compared the metabolic fluxes for these families, predicted using the Arabidopsis thaliana and Sorghum bicolor metabolic networks, with the families' duplication propensities. For duplications produced by both small scale (small-scale duplications) and genome duplication (whole-genome duplications), there is a significant association between the flux and the tendency to duplicate. Following this global analysis, we made a more fine-scale study of the selective constraints observed on plant sodium and phosphate transporters. We find that the different duplication mechanisms give rise to differing selective constraints. However, the exact nature of this pattern varies between the gene families, and we argue that the duplication mechanism alone does not define a duplicated gene's subsequent evolutionary trajectory. Collectively, our results argue for the interplay of history, function, and selection in shaping the duplicate gene evolution in plants.


Assuntos
Dosagem de Genes , Duplicação Gênica , Plantas/genética , Arabidopsis/genética , Evolução Molecular , Genes de Plantas , Bombas de Íon/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Sorghum/genética
17.
Ecol Lett ; 13(12): 1525-35, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20973907

RESUMO

Introduced species escape many pathogens and other enemies, raising three questions. How quickly do introduced hosts accumulate pathogen species? What factors control pathogen species richness? Are these factors the same in the hosts' native and introduced ranges? We analysed fungal and viral pathogen species richness on 124 plant species in both their native European range and introduced North American range. Hosts introduced 400 years ago supported six times more pathogens than those introduced 40 years ago. In hosts' native range, pathogen richness was greater on hosts occurring in more habitat types, with a history of agricultural use and adapted to greater resource supplies. In hosts' introduced range, pathogen richness was correlated with host geographic range size, agricultural use and time since introduction, but not any measured biological traits. Introduced species have accumulated pathogens at rates that are slow relative to most ecological processes, and contingent on geographic and historic circumstance.


Assuntos
Biodiversidade , Ecossistema , Interações Hospedeiro-Patógeno/fisiologia , Espécies Introduzidas , Modelos Biológicos , Plantas , Filogenia , Plantas/microbiologia , Plantas/virologia , Dinâmica Populacional , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...